Omega-3 fatty acids, which are found abundantly in fish oil, are increasingly being used in the management of cardiovascular disease. It is clear that fish oil, in clinically used doses (typically 4 g/d of eicosapentaenoic acid and docosahexaenoic acid) reduce high triglycerides. However, the role of omega-3 fatty acids in reducing mortality, sudden death, arrhythmias, myocardial infarction, and heart failure has not yet been established. This review will focus on the current clinical uses of fish oil and provide an update on their effects on triglycerides, coronary artery disease, heart failure, and arrhythmia. We will explore the dietary sources of fish oil as compared with drug therapy, and discuss the use of fish oil products in combination with other commonly used lipid-lowering agents. We will examine the underlying mechanism of fish oil’s action on triglyceride reduction, plaque stability, and effect in diabetes, and review the newly discovered anti-inflammatory effects of fish oil. Finally, we will examine the limitations of current data and suggest recommendations for fish oil use.
It must be kept in mind that prostate issues have been found to be the result of the fact that men who suffer prostate issues are found in males who’s testosterone levels dropped to dangerous levels. If one bothers to research this fact it will be found that studies show that testosterone controls estrogen levels and as such estrogen levels get out of control and begin to create problems the likes of which our society is suffering right now.
Further, according to subgroup results based on the presence of specific clinical diagnoses or not, the association of omega-3 PUFA treatment with reduced anxiety symptoms was significantly higher in subgroups with specific clinical diagnoses than in subgroups without clinical conditions. Among 6 studies included in a meta-analysis of the effect of omega-3 PUFAs on depressive symptoms, the analysis showed a nearly null effect of omega-3 PUFAs on depressive symptoms in healthy participants.73 Although the reason for the null effect of omega-3 PUFAs on anxiety and depressive symptoms remains unclear, certain pathophysiological conditions might be required for omega-3 PUFAs to exert an association of treatment with reduced anxiety symptoms.
Weimann, A., Bastian, L., Bischoff, W. E., Grotz, M., Hansel, M., Lotz, J., Trautwein, C., Tusch, G., Schlitt, H. J., and Regel, G. Influence of arginine, omega-3 fatty acids and nucleotide-supplemented enteral support on systemic inflammatory response syndrome and multiple organ failure in patients after severe trauma. Nutrition 1998;14(2):165-172. View abstract.
A, Subgroup meta-analysis of the anxiolytic effect of omega-3 polyunsaturated fatty acids (PUFAs) based on an underlying specific clinical diagnosis or not. The anxiolytic effect of omega-3 PUFAs was not significant in the subgroup of participants without specific clinical conditions (k, 5; Hedges g, –0.008; 95% CI, –0.266 to 0.250; P = .95) but was significant in the subgroup of participants with specific clinical diagnoses (k, 14; Hedges g, 0.512; 95% CI, 0.119-0.906; P = .01). Furthermore, the association of treatment with reduced anxiety symptoms of omega-3 PUFAs were significantly stronger in subgroups with specific clinical diagnoses than in subgroups without specific clinical conditions (P = .03). B, Subgroup meta-analysis of the anxiolytic effect of omega-3 PUFAs based on different mean omega-3 PUFA dosages. The anxiolytic effect of omega-3 PUFAs was not significant in subgroups of mean omega-3 PUFA dosages less than 2000 mg/d (k, 9; Hedges g, 0.457; 95% CI, –0.077 to 0.991; P = .09) but was significant in the subgroup of mean omega-3 PUFA dosage of at least 2000 mg/d (k, 11; Hedges g, 0.213; 95% CI, 0.031-0.395; P = .02).

However, the researchers do have some good news. They concluded that omega 3 fatty acids do appear to reduce the type of blood cholesterol known as triglycerides, but that supplements probably are not useful for preventing or improving heart and circulatory problems. And, upping your intake of plant-based omega 3s high in ALA (ie, walnuts, flaxseed and flax oil, chia seeds) may help your heart somewhat.2
Your body also needs omega-6s, another type of fatty acid, to function properly and prevent disease. Unfortunately, these are found in much more abundance than omega-3s in the standard American diet, although your body craves a 1:1 ratio to keep inflammation low. Most modern diets contain a ratio closer to 20:1 or 30:1 omega-6 to omega-3 fatty acids.
When taking fish oil, more is not always better. Remember that you want it to stay in a balanced ratio with omega-6 fats. For most people, I recommend a 1,000-milligram dose of fish oil daily as a good amount and the most scientifically studied dosage. I highly recommend not taking more than that unless directed to under the supervision of a doctor.
The U.S. Food and Drug Administration recommends consuming no more than 3 g/day of EPA and DHA combined, including up to 2 g/day from dietary supplements. Higher doses are sometimes used to lower triglycerides, but anyone taking omega-3s for this purpose should be under the care of a healthcare provider because these doses could cause bleeding problems and possibly affect immune function. Any side effects from taking omega-3 supplements in smaller amounts are usually mild. They include an unpleasant taste in the mouth, bad breath, heartburn, nausea, stomach discomfort, diarrhea, headache, and smelly sweat.

The effect of fish oil on incident atrial fibrillation has not been studied in large randomized trials, and observational population-based trials show mixed results. The Danish Diet, Cancer and Health Study, and the Rotterdam Study followed 47,000 and 5100 middle-aged adults, respectively.45,46 Neither study found that the consumption of fish oil affected the incidence of atrial fibrillation. Similar findings were seen in the Women’s Health Initiative where there was no association between fish and omega-3 FA intake regarding incident atrial fibrillation.47 However, in a 12-year prospective, observational study of 4815 adults over the age of 65, daily fish consumption was associated with a 31% risk reduction in incident atrial fibrillation.48
There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.
Both omega−6 and omega−3 fatty acids are essential: humans must consume them in their diet. Omega−6 and omega−3 eighteen-carbon polyunsaturated fatty acids compete for the same metabolic enzymes, thus the omega−6:omega−3 ratio of ingested fatty acids has significant influence on the ratio and rate of production of eicosanoids, a group of hormones intimately involved in the body's inflammatory and homeostatic processes, which include the prostaglandins, leukotrienes, and thromboxanes, among others. Altering this ratio can change the body's metabolic and inflammatory state.[16] In general, grass-fed animals accumulate more omega−3 than do grain-fed animals, which accumulate relatively more omega−6.[86] Metabolites of omega−6 are more inflammatory (esp. arachidonic acid) than those of omega−3. This necessitates that omega−6 and omega−3 be consumed in a balanced proportion; healthy ratios of omega−6:omega−3, according to some authors, range from 1:1 to 1:4.[87] Other authors believe that a ratio of 4:1 (4 times as much omega−6 as omega−3) is already healthy.[88][89] Studies suggest the evolutionary human diet, rich in game animals, seafood, and other sources of omega−3, may have provided such a ratio.[90][91]
Aceite de Pescado, Acides Gras Oméga-3, Acides Gras Oméga 3, Acides Gras Oméga 3 Sous Forme Ester Éthylique, Acides Gras N-3, Acides Gras Polyinsaturés N-3, Acides Gras W3, ACPI, EPA/DHA Ethyl Ester, Ester Éthylique de l'AEP/ADH, Fish Body Oil, Herring Oil, Huile de Foie de Morue, Huile de Hareng, Huile de Menhaden, Huile de Poisson, Huile de Saumon, Huile de Thon, Huile Lipidique Marine, Huile Marine, Huiles Marines, Lipides Marins, Marine Lipid Concentrate, Marine Fish Oil, Marine Lipid Oil, Marine Lipids, Marine Oil, Marine Oils, Marine Triglyceride, Menhaden Oil, N-3 Fatty Acids, N3-polyunsaturated Fatty Acids, Omega 3, Oméga 3, Omega-3, Oméga-3, Omega-3 Fatty Acid Ethyl Ester, Omega-3 Fatty Acids, Omega 3 Fatty Acids, Omega-3 Marine Triglycerides, PUFA, Salmon Oil, Triglycérides Marins, Tuna Fish Oil, Tuna Oil, W-3 Fatty Acids.

×