Gorjao, R., Verlengia, R., Lima, T. M., Soriano, F. G., Boaventura, M. F., Kanunfre, C. C., Peres, C. M., Sampaio, S. C., Otton, R., Folador, A., Martins, E. F., Curi, T. C., Portiolli, E. P., Newsholme, P., and Curi, R. Effect of docosahexaenoic acid-rich fish oil supplementation on human leukocyte function. Clin Nutr 2006;25(6):923-938. View abstract.

Because of the preliminary state of knowledge on the effects of omega-3 PUFA treatment on anxiety, we decided to include as many studies as possible and not to set further limitations on specific characteristics, such as length of study, diagnosis, omega-3 PUFA dosage, omega-3 PUFA preparation (EPA to DHA ratio), rated anxiety coding scale, or type of control. Therefore, we chose to make the inclusion criteria as broad as possible to avoid missing any potentially eligible studies. The inclusion criteria included clinical trials in humans (randomized or nonrandomized), studies investigating the effects of omega-3 PUFA treatment on anxiety symptoms, and formal published articles in peer-reviewed journals. The clinical trials could be placebo controlled or non–placebo controlled. The target participants could include healthy volunteers, patients with psychiatric illness, and patients with physical illnesses other than psychiatric illnesses. The exclusion criteria included case reports or series, animal studies or review articles, and studies not investigating the effects of omega-3 PUFA treatment on anxiety symptoms. We did not set any language limitation to increase the number of eligible articles. Figure 1 shows the literature search and screening protocol.
Weak bones (osteoporosis). Research suggests that taking fish oil alone or together with calcium and evening primrose oil slows the rate of bone loss and increases bone density at the thigh bone (femur) and spine in elderly people with osteoporosis. But taking fish oil does not slow bone loss in older people with osteoarthritis in the knee but without weak bones.
The DART study, published in 1989, was the first randomized trial to show the efficacy of fish oil on CAD.37 In the trial, 2033 post-MI patients were randomized to receive 3 types of diets: a diet that was either high in cereal fiber, polyunsaturated fat, or fish oil. The fish oil group consumed 200 to 400 g/wk of fatty fish (2 portions of fish per week) or 0.5 g/d of Maxepa fish oil supplement. At 2 years, the primary end point of all-cause mortality was reduced by 29% in the fish oil group, whereas no improvement was seen in the other dietary advice groups.
Omega-3 [(n-3)] long-chain PUFA, including EPA and DHA, are dietary fats with an array of health benefits (1). They are incorporated in many parts of the body including cell membranes (2) and play a role in antiinflammatory processes and in the viscosity of cell membranes (3, 4). EPA and DHA are essential for proper fetal development and healthy aging (5). DHA is a key component of all cell membranes and is found in abundance in the brain and retina (6). EPA and DHA are also the precursors of several metabolites that are potent lipid mediators, considered by many investigators to be beneficial in the prevention or treatment of several diseases (7).
Several large trials have evaluated the effect of fish or fish oils on heart disease. In the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardio (known as the GISSI Prevention Trial), heart attack survivors who took a 1-gram capsule of omega-3 fats every day for three years were less likely to have a repeat heart attack, stroke, or die of sudden death than those who took a placebo. (2) Notably, the risk of sudden cardiac death was reduced by about 50 percent. In the more recent Japan EPA Lipid Intervention Study (JELIS), participants who took EPA plus a cholesterol-lowering statin were less likely to have a major coronary event (sudden cardiac death, fatal or nonfatal heart attack, unstable angina, or a procedure to open or bypass a narrowed or blocked coronary artery) than those who took a statin alone. (3)
Fish or seafood allergy: Some people who are allergic to seafood such as fish might also be allergic to fish oil supplements. There is no reliable information showing how likely people with seafood allergy are to have an allergic reaction to fish oil. Until more is known, advise patients allergic to seafood to avoid or use fish oil supplements cautiously.
Warfarin (Coumadin) is used to slow blood clotting. Fish oil also might slow blood clotting. Taking fish oil with warfarin might slow blood clotting too much and increase the risk of bleeding. However, conflicting results suggests that fish oil does not increase the effects of warfarin. Until more is known, use cautiously in combination with warfarin. Have your blood checked regularly, as your dose of warfarin (Coumadin) might need to be changed.
AD is a devastating disease for which there are limited treatment options and no cure. Memory loss is an early indicator of the disease, which is progressive, and leads to the inability of the patient to care for him- or herself and eventually to death (47). Currently, the number of individuals with AD is estimated to be 26.6 million and is expected to increase to 106.2 million by 2050 (48). There have been many studies conducted regarding the use of omega-3 fatty acid supplementation and AD (Table 2). DHA is present in large amounts in neuron membrane phospholipids, where it is involved in proper function of the nervous system, which is why it is thought to play a role in AD (49). A case-control study consisting of 148 patients with cognitive impairment [Mini-Mental State Examination (MMSE) score <24] and 45 control patients (MMSE score ≥24) showed that serum cholesteryl ester-EPA and -DHA levels were significantly lower (P < 0.05 and P < 0.001, respectively) in all MMSE score quartiles of patients with AD compared with control values (49). Another study found that a diet characterized by higher intakes of foods high in omega-3 fatty acids (salad dressing, nuts, fish, tomatoes, poultry, cruciferous vegetables, fruits, dark and green leafy vegetables), and a lower intake of foods low in omega-3 fatty acids (high-fat dairy products, red meat, organ meat, butter) was strongly associated with a lower AD risk (50). Image analysis of brain sections of an aged AD mouse model showed that overall plaque burden was significantly reduced by 40.3% in mice with a diet enriched with DHA (P < 0.05) compared with placebo. The largest reductions (40–50%) were seen in brain regions that are thought to be involved with AD, the hippocampus and parietal cortex (51). A central event in AD is thought to be the activation of multiple inflammatory cells in the brain. Release of IL-1B, IL-6, and TNF α from microglia cells may lead to dysfunction of the neurons in the brain (52). In 1 study, AD patients treated with EPA+DHA supplementation increased their plasma concentrations of EPA and DHA, which were associated with reduced release of inflammatory factors IL-1B, IL-6, and granulocyte colony–stimulating factor from peripheral blood mononuclear cells (53).
It can be challenging to get the appropriate intake of EPA and DHA through diet alone, even though EPA and DHA are produced by water plants such as algae and are prevalent in marine animals. A shorter chain omega-3 fatty acid, α-linolenic acid (ALA),6 is a prominent component of our diet as it is found in many land plants that are commonly eaten, but it does not provide the health benefits seen with EPA and DHA. Although it is possible for the body to convert ALA to EPA and DHA by enlongase and desaturase enzymes, research suggests that only a small amount can be synthesized in the body from this process (8). For example, 1 study suggested that only ∼2 to 10% of ALA is converted to EPA or DHA (9), and other studies found even less: Goyens et al. (10) found an ALA conversion of ∼7% for EPA, but only 0.013% for DHA; Hussein et al. (11) found an ALA conversion of only 0.3% for EPA and <0.01% for DHA.

^ Jump up to: a b Aursand, Marit; Mozuraityte, Revilija; Hamre, Kristin; Knutsen, Helle; Maage, Amund; Arukwe, Augustine (2011). Description of the processes in the value chain and risk assessment of decomposition substances and oxidation products in fish oils (PDF). Norwegian Scientific Committee for Food Safety. ISBN 978-82-8259-035-8. Retrieved 19 October 2012.[page needed]

To reap all the omega-3 benefits, it may be difficult for some people to eat the required amounts of oily fish, particularly with the well-known dangers of farmed fish, which are more readily available to most Americans. That’s why some people consider a high-quality omega-3 supplement in addition to a well-rounded diet. I’ll discuss supplements in a moment, though.

The studies examining the possible benefits of omega-3s continue. Researchers are looking at a range of health outcomes and the impact of a heart healthy diet rich in omega 3 fatty acids on a range of chronic disease. For instance, Dr. Hooper's team is beginning to evaluate the effects that omega-3 fats may have on diabetes, dementia, and some cancers.

In a 2009 joint study by the USDA and researchers at Clemson University in South Carolina, grass-fed beef was compared with grain-finished beef. The researchers found that grass-finished beef is higher in moisture content, 42.5% lower total lipid content, 54% lower in total fatty acids, 54% higher in beta-carotene, 288% higher in vitamin E (alpha-tocopherol), higher in the B-vitamins thiamin and riboflavin, higher in the minerals calcium, magnesium, and potassium, 193% higher in total omega−3s, 117% higher in CLA (cis-9, trans-11 octadecenoic acid, a cojugated linoleic acid, which is a potential cancer fighter), 90% higher in vaccenic acid (which can be transformed into CLA), lower in the saturated fats linked with heart disease, and has a healthier ratio of omega−6 to omega−3 fatty acids (1.65 vs 4.84). Protein and cholesterol content were equal.[86]
Only fish and breast milk contain all the members of the omega-3 family, including its two main stars, EPA and DHA. Because Americans as a rule consume far too few omega-3s from fish or fish oil, it’s no surprise that the majority of Americans have low omega-3 index levels as well. A recent study of global omega-3 index levels found that an estimated 95% of Americans (with the exception of folks from Alaska) had an omega-3 index of 4 or below, putting them in the high risk category (5, 6, 7).
One reason omega-3 fatty acids may be so beneficial to this many aspects of health could be that they help decrease system-wide inflammation. (49, 50, 51, 52, 53) Inflammation is at the root of most diseases and is related to the development of nearly every major illness, so by eating a nutrient-dense, anti-inflammatory diet, you give your body its best chance to fight disease like it was designed to do.

The chemical structures of EPA and DHA are very similar and they compete for uptake and processing resources. During digestion, the triglyceride molecules in standard fish oil are broken down into a mono glycerol and two free fatty acids, small enough to be absorbed into cells of the gut lining. More often than not, DHA is the fatty acid that remains attached to the glycerol backbone, meaning in essence that DHA gets a ‘free pass’ into the gut, while the remaining free fatty acids (more often EPA) must reattach onto a glycerol molecule or risk being oxidised and used as fuel. The implication of this is that DHA levels in our cells are often concentrated at the expense of EPA after absorption when taking EPA and DHA in the standard ratio of 1.5 to 1.
This information is not designed to replace a physician's independent judgment about the appropriateness or risks of a procedure for a given patient. Always consult your doctor about your medical conditions. Vertical Health & EndocrineWeb do not provide medical advice, diagnosis or treatment. Use of this website is conditional upon your acceptance of our user agreement.
The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication, or have a medical condition.
Fish oil’s most potent effect on atherosclerosis may be related to its potential to alter plaque inflammation, thereby stabilizing vulnerable plaques. In recent years there has been a growing body of evidence that is shifting the paradigm of how inflammation is contained and dissipated.4 In this new model, inflammation resolution is an active process mediated by lipid-derived compounds. Newly discovered families of chemical mediators, resolvins, and protectins5,6 are directly involved in blocking neutrophil migration, infiltration, and recruitment, as well as in blocking T-cell migration and promoting T-cell apoptosis.7–12 In addition, protectins can reduce tumor necrosis factor and interferon secretion.13 Interestingly, both protectins and resolvins are strictly derived from omega-3 FA. EPA is the substrate of the resolvins family and DHA can be converted to both resolvins and protectins.7 It may be that the effects of fish oil on inflammatory mediators underlie the positive findings demonstrated in several trials assessing fish oil and plaque stability.14–16
Jump up ^ Martins, Julian G (2009). "EPA but Not DHA Appears to Be Responsible for the Efficacy of Omega-3 Long Chain Polyunsaturated Fatty Acid Supplementation in Depression: Evidence from a Meta-Analysis of Randomized Controlled Trials". Journal of the American College of Nutrition. 28 (5): 525–42. doi:10.1080/07315724.2009.10719785. PMID 20439549.
For patients without documented CAD, the American Heart Association 2006 Diet and Lifestyle Recommendations advise the consumption of at least 2 servings of fish per week, preferably fatty fish high in DHA and EPA.65 The guidelines also recommend a daily fish intake equivalent to 1 g/d of EPA and DHA for secondary prevention of CAD. Fish oil supplements containing EPA and DHA are suggested as an alternative to fatty fish consumption for secondary prevention.
High triglycerides. Most research shows that fish oil from supplements and food sources can reduce triglyceride levels. The effects of fish oil appear to be the greatest in people who have very high triglyceride levels. Also the amount of fish oil consumed seems to directly affect how much triglyceride levels are reduced. Some fish oil supplements including Lovaza, Omtryg, and Epanova have been approved by the FDA to lower triglycerides.