A Pregnancy Prerequisite: Omega-3 fatty acids directly affect brain development, making it crucial for expectant mothers. Additionally, research indicates they decrease a mother's risk of depression. When the mother doesn't have enough of these essential fatty acids, the baby borrows from her. Some prenatal vitamins now include omega-3s, so be sure to check the label or grab a handful of walnuts each day.
In the United States, the Institute of Medicine publishes a system of Dietary Reference Intakes, which includes Recommended Dietary Allowances (RDAs) for individual nutrients, and Acceptable Macronutrient Distribution Ranges (AMDRs) for certain groups of nutrients, such as fats. When there is insufficient evidence to determine an RDA, the institute may publish an Adequate Intake (AI) instead, which has a similar meaning, but is less certain. The AI for α-linolenic acid is 1.6 grams/day for men and 1.1 grams/day for women, while the AMDR is 0.6% to 1.2% of total energy. Because the physiological potency of EPA and DHA is much greater than that of ALA, it is not possible to estimate one AMDR for all omega−3 fatty acids. Approximately 10 percent of the AMDR can be consumed as EPA and/or DHA.[105] The Institute of Medicine has not established a RDA or AI for EPA, DHA or the combination, so there is no Daily Value (DVs are derived from RDAs), no labeling of foods or supplements as providing a DV percentage of these fatty acids per serving, and no labeling a food or supplement as an excellent source, or "High in..."[citation needed] As for safety, there was insufficient evidence as of 2005 to set an upper tolerable limit for omega−3 fatty acids,[105] although the FDA has advised that adults can safely consume up to a total of 3 grams per day of combined DHA and EPA, with no more than 2 g from dietary supplements.[8]

The health benefits of fish oil include its ability to aid in weight loss and healthy pregnancy. It also promotes fertility and skin care (particularly for psoriasis and acne). It is beneficial in the treatment of various heart diseases, high cholesterol, depression, anxiety, ADHD, weak immune system, cancer, diabetes, inflammation, arthritis, IBD, AIDS, Alzheimer’s disease, eye disorders, macular degeneration, and ulcers.
Lok CE, Moist L, Hemmelgarn BR, Tonelli M, Vazquez MA, Dorval M, Oliver M, Donnelly S, Allon M, Stanley K; Fish Oil Inhibition of Stenosis in Hemodialysis Grafts (FISH) Study Group. Effect of fish oil supplementation on graft patency and cardiovascular events among patients with new synthetic arteriovenous hemodialysis grafts: a randomized controlled trial. JAMA 2012;307(17):1809-16. View abstract.
Abnormal rapid heart rhythms (ventricular arrhythmias). Population research suggests that eating a lot of fish has no effect on the risk for abnormal rapid heart rhythms. Clinical research is inconsistent. Some research shows that taking fish oil daily does not affect the risk for abnormal heart rhythms. But other research shows that taking fish oil for 11 months delays the development of the condition. However, overall, taking fish oil does not seem to reduce the risk of death in people with abnormal rapid heart rhythms.
Smithers, L. G., Collins, C. T., Simmonds, L. A., Gibson, R. A., McPhee, A., and Makrides, M. Feeding preterm infants milk with a higher dose of docosahexaenoic acid than that used in current practice does not influence language or behavior in early childhood: a follow-up study of a randomized controlled trial. Am J Clin Nutr 2010;91(3):628-634. View abstract.
Another small study had all volunteers consume the same exact control diet and substituted fish oil for visible fats (things like butter and cream). The volunteers consumed six grams of fish oil each day for three weeks. They found that body fat mass decreased with the intake of fish oil. The researchers conclude that dietary fish oil reduces body fat and stimulates the use of fatty acids for the production of energy in healthy adults. (33a)
What's more, ALA is just a precursor to EPA and DHA. You need certain enzymes to elongate and desaturate ALA so it can become long-chained omega-3s. Unfortunately, this does not work in some people, particularly those who are deficient in certain vitamins and minerals, leading to very low conversion rates – only 1 percent of ALA is converted to EPA/DHA. In some, the conversion can even dip as low as 0.1 to 0.5 percent!
The effect of fish oil on incident atrial fibrillation has not been studied in large randomized trials, and observational population-based trials show mixed results. The Danish Diet, Cancer and Health Study, and the Rotterdam Study followed 47,000 and 5100 middle-aged adults, respectively.45,46 Neither study found that the consumption of fish oil affected the incidence of atrial fibrillation. Similar findings were seen in the Women’s Health Initiative where there was no association between fish and omega-3 FA intake regarding incident atrial fibrillation.47 However, in a 12-year prospective, observational study of 4815 adults over the age of 65, daily fish consumption was associated with a 31% risk reduction in incident atrial fibrillation.48
Irving, G. F., Freund-Levi, Y., Eriksdotter-Jonhagen, M., Basun, H., Brismar, K., Hjorth, E., Palmblad, J., Vessby, B., Vedin, I., Wahlund, L. O., and Cederholm, T. Omega-3 fatty acid supplementation effects on weight and appetite in patients with Alzheimer's disease: the omega-3 Alzheimer's disease study. J Am Geriatr Soc 2009;57(1):11-17. View abstract.

The GISSI-Heart Failure trial was the first blinded, randomized trial to assess the efficacy of fish oil supplements in patients with heart failure.51 The trial enrolled 7046 subjects with heart failure; 60% with New York Heart Association class II symptoms and 40% with a history of MI. The majority of patients were on a standard heart failure regimen, including angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, beta-blockers, and spironolactone, but only 22% were on a statin. At an average of 3.9 years, the coprimary end points of death and death or hospital admission for cardiovascular reasons were reduced by approximately 9% with fish oil supplementation. Sudden cardiac death, a secondary end-point, showed a statistically nonsignificant relative risk reduction of 7% with fish oil. There was also a reduction in 2 other arrhythmia-related secondary end-points: first hospitalization for ventricular arrhythmia and presumed arrhythmic death.
Nonetheless, large population studies with solid data both on the participants’ diets and causes of disease and death bolstered the beliefs that eating fish often was a heart-healthy practice linked to reduced rates of cardiovascular disease. For example, a comprehensive analysis conducted by Dr. Dariush Mozaffarian and Eric Rimm of the Harvard T.H. Chan School of Public Health found that eating two servings of fatty fish a week — equal to about two grams of omega-3 fatty acids — lowered the risk of death from heart disease by more than a third and total deaths by 17 percent.

Higher visual acuity after DHA supplementation is a consistent finding in infants born preterm. For infants born at term, the results are less consistent and are better explained by differences in sensitivity of the visual acuity test (electrophysiologic tests being more sensitive than subjective tests) or by differences in the amount of DHA included in the experimental formula.
If you’re not able to get enough fish oil benefits through your diet, fish oil supplements can be a good option. Fish oil side effects can include belching, bad breath, heartburn, nausea, loose stools, rash and nosebleeds, but in my experience, taking a high-quality fish oil supplement can reduce the likelihood of any unwanted side effects. It’s also a good idea to take fish oil with meals to reduce side effects.

High levels of the oils in blood samples were linked with a 71 per cent increased risk of developing an aggressive and dangerous form of prostate cancer, according to the research. That study, if I recall correctly, mentioned concern about men eating fish more than a certain number of times a week having a 54% increased risk of developing prostate cancer.

In my opinion, the key benefit of DHA lies in its unique spatial characteristics. As mentioned earlier, the extra double bond (six in DHA vs. five in EPA) and increased carbon length (22 carbons in DHA vs. 20 in EPA) means that DHA takes up takes up a lot more space than does EPA in the membrane. Although this increase in spatial volume makes DHA a poor substrate for phospholipase A2 as well as the COX and LOX enzymes, it does a great job of making membranes (especially those in the brain) a lot more fluid as the DHA sweeps out a much greater volume in the membrane than does EPA. This increase in membrane fluidity is critical for synaptic vesicles and the retina of the eye as it allows receptors to rotate more effectively thus increasing the transmission of signals from the surface of the membrane to the interior of the nerve cells. This is why DHA is a critical component of these highly fluid portions of the nerves (7). On the other hand, the myelin membrane is essentially an insulator so that relatively little DHA is found in that part of the membrane.


Your best way to achieve a good balance of omega-3 and omega-6 is by getting your fish oil from wild-caught fish like salmon. However, I still think it is beneficial for some to supplement with a high-quality omega-3 fish oil or cod liver oil. Plus, cold water fish are frequently contaminated with mercury and pesticide residues, making it very difficult to safely achieve recommended levels.
Many people focus on the dosage of fish oil to take, like 1000 mg or 1200 mg, but it is the omega-3s that matter. This is where the benefits of fish oil are found. The two types of omega-3 fatty acids to focus on are EPA and DHA. These omega-3s are naturally found in oily fish like salmon, halibut, sardines and anchovies, and are the very reason why fish oil supplements have received such high praise.
42. Cawood AL, Ding R, Napper FL, Young RH, Williams JA, Ward MJ, Gudmundsen O, Vige R, Payne SP, Ye S, et al. Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis. 2010;212:252–9. [PubMed]
Jump up ^ Martins, Julian G (2009). "EPA but Not DHA Appears to Be Responsible for the Efficacy of Omega-3 Long Chain Polyunsaturated Fatty Acid Supplementation in Depression: Evidence from a Meta-Analysis of Randomized Controlled Trials". Journal of the American College of Nutrition. 28 (5): 525–42. doi:10.1080/07315724.2009.10719785. PMID 20439549.

In fact, dietary fat intake has been among the most widely studied dietary risk factors for breast and prostate cancers. Two studies from 2002 explain how omega-3 can protect against breast cancer. BRCA1 (breast cancer gene 1) and BRCA2 (breast cancer gene 2) are two tumor suppressor genes that, when functioning normally, help repair DNA damage, a process that also prevents tumor development.

Omega-3 Power is sourced from anchovies, sardines, and mackerel. These fish roam mostly in the mid-level of the ocean and have relatively short-lived lifespans. Because of this, they tend to accumulate fewer toxins. In addition, the fish oil in Omega-3 Power is put through the most thorough purification processes available. It includes screening for more than 250 potentially toxic chemicals, and at the same time, eliminates the “burpy” effects of crude fish oils. The result is the highest quality omega-3 supplement available on the market today.
Metagenics offers a wide range of educational opportunities including webinars, group meetings, and seminars as part of our commitment to continuing functional medicine education. Our goal is to give our practitioners further insight to help address their patients’ unique health needs for a higher level of personalized, lifetime wellness care. We have been sharing this ever-growing body of nutritional and lifestyle research for over 25 years.
Fish oil is oil derived from the tissues of oily fish. Fish oils contain the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), precursors of certain eicosanoids that are known to reduce inflammation in the body,[1][2] and have other health benefits, such as treating hypertriglyceridemia, although claims of preventing heart attacks or strokes have not been supported.[3][4][5][6] Fish oil and omega-3 fatty acids have been studied in a wide variety of other conditions, such as clinical depression,[7][8] anxiety,[9][10][11] cancer, and macular degeneration, yet benefits in these conditions have not been verified.[12]
Dr. Holub has provided the questions and answers for several emails he has received over the years regarding omega-3 fatty acids for health.  If you have a question regarding omega-3, it is likely that Dr. Holub has answered it either here in this section, or elsewhere on the site (e.g. check the scientific overview section for general questions regarding omega-3).  To quickly find your answer, please use our search bar located in the top right section of this page.  After searching our site, and  you still cannot find the answer to your question, we invite you to ask Dr. Holub a question here.

^ Jump up to: a b Jensen, Craig L.; Voigt, Robert G.; Llorente, Antolin M.; Peters, Sarika U.; Prager, Thomas C.; Zou, Yali L.; Rozelle, Judith C.; Turcich, Marie R.; Fraley, J. Kennard; Anderson, Robert E.; Heird, William C. (2010). "Effects of Early Maternal Docosahexaenoic Acid Intake on Neuropsychological Status and Visual Acuity at Five Years of Age of Breast-Fed Term Infants". The Journal of Pediatrics. 157 (6): 900–05. doi:10.1016/j.jpeds.2010.06.006. PMID 20655543.
Omega 3 is a type of fat. Small amounts of omega 3 fats are essential for good health, and they can be found in the food that we eat. The main types of omega 3 fatty acids are; alpha­linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA).  ALA is normally found in fats from plant foods, such as nuts and seeds (walnuts and rapeseed are rich sources). EPA and DHA, collectively called long chain omega 3 fats, are naturally found in fatty fish, such as salmon and fish oils including cod liver oil.
In my opinion, the key benefit of DHA lies in its unique spatial characteristics. As mentioned earlier, the extra double bond (six in DHA vs. five in EPA) and increased carbon length (22 carbons in DHA vs. 20 in EPA) means that DHA takes up takes up a lot more space than does EPA in the membrane. Although this increase in spatial volume makes DHA a poor substrate for phospholipase A2 as well as the COX and LOX enzymes, it does a great job of making membranes (especially those in the brain) a lot more fluid as the DHA sweeps out a much greater volume in the membrane than does EPA. This increase in membrane fluidity is critical for synaptic vesicles and the retina of the eye as it allows receptors to rotate more effectively thus increasing the transmission of signals from the surface of the membrane to the interior of the nerve cells. This is why DHA is a critical component of these highly fluid portions of the nerves (7). On the other hand, the myelin membrane is essentially an insulator so that relatively little DHA is found in that part of the membrane.
Moertl, D., Hammer, A., Steiner, S., Hutuleac, R., Vonbank, K., and Berger, R. Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study. Am.Heart J. 2011;161(5):915-919. View abstract.
Most U.S. adults fail to consume adequate amounts of foods rich in EPA and DHA on a regular basis (at least 8 ounces of fatty fish per week is recommended), and probably consume too many omega-6 fats in comparison (soybean oil, canola oil, cottonseed oil, etc.). This omega-3:omega-6 imbalance can have a negative effect on inflammation patterns and may also be implicated as a contributing factor to other processes related to cellular metabolism, hormone signaling, and even weight regulation.
Due to the anticipated heterogeneity, a random-effects meta-analysis was chosen rather than a fixed-effects meta-analysis because random-effects modeling is more stringent and incorporates an among-study variance in the calculations. The entire meta-analysis procedure was performed on the platform of Comprehensive Meta-analysis statistical software, version 3 (Biostat). Under the preliminary assumption that the scales for anxiety symptoms are heterogeneous among the recruited studies, we chose Hedges g and 95% confidence intervals to combine the effect sizes, in accordance with the manual of the Comprehensive Meta-analysis statistical software, version 3. Regarding the interpretation of effect sizes, we defined Hedges g values 0 or higher as a better association of treatment with reduced anxiety symptoms of omega-3 PUFAs than in controls. For each analysis, a 2-tailed P value less than .05 was considered to indicate statistical significance. When more than 1 anxiety scale was used in a study, we chose the one with the most informative data (ie, mean and standard deviation [SD] before and after treatment). We entered the primary outcome provided in the included articles or obtained from the original authors. As for the variance imputation, we mainly chose the mean and SD before and after treatment. Later, we entered the mean and SD and calculated the effect sizes based on the software option, standardized by post score SD. In the case of studies with 2 active treatment arms, we merged the 2 active treatment arms into 1 group. If these 2 active treatment arms belonged to different subgroups (ie, different PUFA dosage subgroups), we kept them separate. Regarding the numbers of participants counted, we chose intention-to-treat as our priority. If there were insufficient data in the intention to treat group (ie, some studies only provided the changes in anxiety severity in those participants completing trials), we chose instead the per-protocol numbers of participants.
To date, no studies have assessed mortality or nonfatal MI in diabetic patients treated with fish oil.52–54 A recent comprehensive meta-analysis analyzed the effect of fish oil supplements on metabolic parameters when added to usual care in patients with type 2 diabetes mellitus or impaired glucose tolerance.54 The meta-analysis included a total of 23 small, randomized trials with over 1000 patients that were assessed for lipid and insulin resistance parameters. At a mean follow-up of approximately 9 weeks, triglyceride reduction was accomplished but no significant changes were seen in total cholesterol, high-density lipoprotein-cholesterol, HgA1c levels, fasting glucose levels, fasting insulin, or in body weight. The largest randomized trial to date assessed approximately 400 patients with impaired glucose tolerance or insulin-dependent diabetes mel-litus, and as reflected in the larger meta-analysis, found no effect of moderate to high doses of fish oil on diabetic parameters.55 There are insufficient randomized data to comment on the combination of fish oil and specific diabetes medications and related mortality and/or morbidity.
The omega-3 index is also important because it is inversely related to one’s omega-6 to omega-3 ratio — another important measurement (3). A lower omega-6/omega-3 ratio (meaning, you consume a balanced amount of these two fatty acid families) is associated with a reduced risk of many chronic diseases, including cardiovascular disease, cancer, and autoimmune disease, to name a few (4). Of course, most people get far too much omega-6 and too little omega-3, thanks to the plethora of highly processed foods in the Western diet.
Damage to the kidneys caused the drug cyclosporine. Cyclosporine is a medication that reduces the chance of organ rejection after an organ transplant. Taking fish oil seems to prevent kidney damage in people taking this drug. Fish oil also seems to improve kidney function during the recovery phase following the rejection of a transplanted organ in people taking cyclosporine.
×