van der Meij, B. S., Langius, J. A., Smit, E. F., Spreeuwenberg, M. D., von Blomberg, B. M., Heijboer, A. C., Paul, M. A., and van Leeuwen, P. A. Oral nutritional supplements containing (n-3) polyunsaturated fatty acids affect the nutritional status of patients with stage III non-small cell lung cancer during multimodality treatment. J.Nutr. 2010;140(10):1774-1780. View abstract.
The Department of Ecology of the State of Washington has ranked various seafood based on its EPA and DHA concentrations. The highest-ranking seafood is mackerel, excluding King mackerel, that has a concentration of 1,790 milligrams of combined EPA and DHA per 100 grams, followed by salmon at 1,590; bluefin tuna has between 1173 and 1504 milligrams; sardines contain 980 milligrams; albacore tuna has 862 milligrams; bass has 640 milligrams; tuna has 630 milligrams; trout and swordfish have 580 milligrams; and walleye has 530 milligrams. Other seafood, which includes sea bass, clams, lobster, scallops, catfish, cod, pollock, crayfish and scallops contains between 200 and 500 milligrams of EPA and DHA per 100 grams. Breaded fish products rank lowest on the list with only 0.26 milligram per 100 grams.
The health benefits of fish oil can be incredible for the body’s largest organ, the skin. This source of essential fats improves the health and beauty of human skin in several ways. Fish oil benefits and nourishes the skin with fats and contributes fat-soluble vitamins that help skin maintain a smooth, elastic texture. There is also evidence that fish oil prevents wrinkles and works against the aging process.
Omega-3 [(n-3)] fatty acids have been linked to healthy aging throughout life. Recently, fish-derived omega-3 fatty acids EPA and DHA have been associated with fetal development, cardiovascular function, and Alzheimer's disease. However, because our bodies do not efficiently produce some omega-3 fatty acids from marine sources, it is necessary to obtain adequate amounts through fish and fish-oil products. Studies have shown that EPA and DHA are important for proper fetal development, including neuronal, retinal, and immune function. EPA and DHA may affect many aspects of cardiovascular function including inflammation, peripheral artery disease, major coronary events, and anticoagulation. EPA and DHA have been linked to promising results in prevention, weight management, and cognitive function in those with very mild Alzheimer's disease.
What's more, ALA is just a precursor to EPA and DHA. You need certain enzymes to elongate and desaturate ALA so it can become long-chained omega-3s. Unfortunately, this does not work in some people, particularly those who are deficient in certain vitamins and minerals, leading to very low conversion rates – only 1 percent of ALA is converted to EPA/DHA. In some, the conversion can even dip as low as 0.1 to 0.5 percent!

To our knowledge, this is the first systematic review and meta-analysis to examine the anxiolytic effects of omega-3 PUFAs in individuals with anxiety symptoms. The overall findings revealed modest anxiolytic effects of omega-3 PUFAs in individuals with various neuropsychiatric or major physical illnesses. Although participants and diagnoses were heterogeneous, the main finding of this meta-analysis was that omega-3 PUFAs were associated with significant reduction in anxiety symptoms compared with controls; this effect persisted vs placebo controls. Furthermore, the association of treatment with reduced anxiety symptoms of omega-3 PUFA were significantly higher in subgroups with specific clinical diagnoses than in subgroups without clinical conditions.
My initial interest in omga-3 was an article by Dr Andrew Stoll in Harvard about May 99, One of my bipolar patients had extreme OCD related to HIV which was not relevant to her. I put her on 9.6g of fish oil and continued her on her regular medication. She was well for the next 3 years with no obvious mental health problem when she was attending here.
Two psychiatrists (P.-T.T. and T.-Y.C.) separately performed a systematic literature search of the PubMed, Embase, ProQuest, ScienceDirect, Cochrane Library, ClinicalKey, Web of Science, and ClinicalTrials.gov databases to March 4, 2018. Because we presumed some clinical trials would use investigating scales for some other mood symptoms but also contain symptoms of anxiety, we tried to use some nonspecific medical subject heading terms to include those clinical trials. Therefore, we used the following keywords: omega-3, eicosapentaenoic acid, EPA, DHA, or docosahexaenoic acid; and anxiety, anxiety disorder, generalized anxiety disorder, agoraphobia, panic disorder, or posttraumatic stress disorder. After removing duplicate studies, the same 2 authors screened the search results according to the title and abstract to evaluate eligibility. List of potentially relevant studies were generated for a full-text review. Any inconsistencies were discussed with a third author to achieve final consensus. To expand the list of potentially eligible articles, we performed a manual search of the reference lists of review articles in this area.12,38,39

46. Gajos G, Rostoff P, Undas A, Piwowarska W. Effects of polyunsaturated omega-3 fatty acids on responsiveness to dual antiplatelet therapy in patients undergoing percutaneous coronary intervention: the OMEGA-PCI (OMEGA-3 fatty acids after pci to modify responsiveness to dual antiplatelet therapy) study. J Am Coll Cardiol. 2010;55:1671–8. [PubMed]


Omega−3 fatty acids, also called ω−3 fatty acids or n−3 fatty acids,[1] are polyunsaturated fatty acids (PUFAs).[2][3] The fatty acids have two ends, the carboxylic acid (-COOH) end, which is considered the beginning of the chain, thus "alpha", and the methyl (-CH3) end, which is considered the "tail" of the chain, thus "omega". One way in which a fatty acid is named is determined by the location of the first double bond, counted from the tail, that is, the omega (ω-) or the n- end. Thus, in omega-3 fatty acids the first double bond is between the third and fourth carbon atoms from the tail end. However, the standard (IUPAC) chemical nomenclature system starts from the carboxyl end.

In short, there is no single optimal EPA:DHA ratio. If we are really healthy, with an optimal omega-6 to omega-3 ratio (from a diet rich in omega-3 fatty acids and low in grains and vegetable oils) and have an active, stress-free lifestyle, relying on standard fish oil in the natural 1.5:1 EPA:DHA ratio or simply consuming oily fish is completely adequate.

These conversions occur competitively with omega−6 fatty acids, which are essential closely related chemical analogues that are derived from linoleic acid. They both utilize the same desaturase and elongase proteins in order to synthesize inflammatory regulatory proteins.[50] The products of both pathways are vital for growth making a balanced diet of omega−3 and omega−6 important to an individual's health.[77] A balanced intake ratio of 1:1 was believed to be ideal in order for proteins to be able to synthesize both pathways sufficiently, but this has been controversial as of recent research.[78]
Higdon JV, Liu J, Du S, et al. Supplementation of postmenopausal women with fish oil rich in eicosapentaenoic acid and docosahexaenoic acid is not associated with greater in vivo lipid peroxidation compared with oils rich in oleate and linoleate as assessed by plasma malondialdehyde and F(2)- isoprostanes. Am J Clin Nutr 2000;72:714-22. View abstract.
Thusgaard, M., Christensen, J. H., Morn, B., Andersen, T. S., Vige, R., Arildsen, H., Schmidt, E. B., and Nielsen, H. Effect of fish oil (n-3 polyunsaturated fatty acids) on plasma lipids, lipoproteins and inflammatory markers in HIV-infected patients treated with antiretroviral therapy: a randomized, double-blind, placebo-controlled study. Scand.J.Infect.Dis. 2009;41(10):760-766. View abstract.

Badia-Tahull, M. B., Llop-Talaveron, J. M., Leiva-Badosa, E., Biondo, S., Farran-Teixido, L., Ramon-Torrell, J. M., and Jodar-Masanes, R. A randomised study on the clinical progress of high-risk elective major gastrointestinal surgery patients treated with olive oil-based parenteral nutrition with or without a fish oil supplement. Br.J.Nutr. 2010;104(5):737-741. View abstract.
Many studies documenting the benefits of omega-3s have been conducted with supplemental daily dosages between 2 and 5 grams of EPA and DHA, more than you could get in 2 servings of fish a week. But that doesn't mean eating fish is an exercise in futility. Many studies document its benefits. For example, a 2003 National Eye Institute study showed that 60- to 80-year-olds eating fish more than twice a week were half as likely to develop macular degeneration as those who ate no fish at all.
Added inactive ingredients also contribute to product safety. Eight supplements in this study contained ‘natural’ flavors such as citrus-derived additives. One product, Coromega Omega-3, also contained benzoic acid, a popular antibacterial agent linked to carcinogenic risks when combined with vitamin C. Other controversial excipients included the artificial coloring agents FD&C Blue 1 and FD&C Red 40 as well as the whitening agent titanium dioxide.
Attention deficit-hyperactivity disorder (ADHD) in children. Early research shows that taking fish oil improves attention, mental function, and behavior in children 8-13 years-old with ADHD. Other research shows that taking a specific supplement containing fish oil and evening primrose oil (Eye Q, Novasel) improves mental function and behavior in children 7-12 years-old with ADHD.
×