There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.

The University of East Anglia (UEA) is a UK Top 15 university. Known for its world-leading research and outstanding student experience, it was awarded Gold in the Teaching Excellence Framework and  is a leading member of Norwich Research Park, one of Europe’s biggest concentrations of researchers in the fields of environment, health and plant science. www.uea.ac.uk.
Omega−3 fatty acids, also called ω−3 fatty acids or n−3 fatty acids,[1] are polyunsaturated fatty acids (PUFAs).[2][3] The fatty acids have two ends, the carboxylic acid (-COOH) end, which is considered the beginning of the chain, thus "alpha", and the methyl (-CH3) end, which is considered the "tail" of the chain, thus "omega". One way in which a fatty acid is named is determined by the location of the first double bond, counted from the tail, that is, the omega (ω-) or the n- end. Thus, in omega-3 fatty acids the first double bond is between the third and fourth carbon atoms from the tail end. However, the standard (IUPAC) chemical nomenclature system starts from the carboxyl end.

In total, 19 articles with 19 data sets revealed the main results of the meta-analysis, namely that there was a significantly better association of treatment with reduced anxiety symptoms in patients receiving omega-3 PUFA treatment than in those not receiving it (k, 19; Hedges g, 0.374; 95% CI, 0.081-0.666; P = .01; Figure 2), with significant heterogeneity (Cochran Q, 178.820; df, 18; I2, 89.934%; P < .001) but no significant publication bias via Egger regression (t, 1.736; df, 17; P = .10) or inspection of the funnel plot (eFigure 2 in the Supplement). According to the trim-and-fill test, there was no need for adjustment for publication bias. The meta-analysis results remained significant after removal of any one of the included studies, which indicated that the significant results are not owing to any single study.
Increasing ALA intake probably makes little or no difference to all‐cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low‐quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low‐quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.
A, Subgroup meta-analysis of the anxiolytic effect of omega-3 polyunsaturated fatty acids (PUFAs) based on an underlying specific clinical diagnosis or not. The anxiolytic effect of omega-3 PUFAs was not significant in the subgroup of participants without specific clinical conditions (k, 5; Hedges g, –0.008; 95% CI, –0.266 to 0.250; P = .95) but was significant in the subgroup of participants with specific clinical diagnoses (k, 14; Hedges g, 0.512; 95% CI, 0.119-0.906; P = .01). Furthermore, the association of treatment with reduced anxiety symptoms of omega-3 PUFAs were significantly stronger in subgroups with specific clinical diagnoses than in subgroups without specific clinical conditions (P = .03). B, Subgroup meta-analysis of the anxiolytic effect of omega-3 PUFAs based on different mean omega-3 PUFA dosages. The anxiolytic effect of omega-3 PUFAs was not significant in subgroups of mean omega-3 PUFA dosages less than 2000 mg/d (k, 9; Hedges g, 0.457; 95% CI, –0.077 to 0.991; P = .09) but was significant in the subgroup of mean omega-3 PUFA dosage of at least 2000 mg/d (k, 11; Hedges g, 0.213; 95% CI, 0.031-0.395; P = .02).

Human diet has changed rapidly in recent centuries resulting in a reported increased diet of omega−6 in comparison to omega−3.[83] The rapid evolution of human diet away from a 1:1 omega−3 and omega−6 ratio, such as during the Neolithic Agricultural Revolution, has presumably been too fast for humans to have adapted to biological profiles adept at balancing omega−3 and omega−6 ratios of 1:1.[84] This is commonly believed to be the reason why modern diets are correlated with many inflammatory disorders.[83] While omega−3 polyunsaturated fatty acids may be beneficial in preventing heart disease in humans, the level of omega−6 polyunsaturated fatty acids (and, therefore, the ratio) does not matter.[78][85]
Fish oil is effective in reducing inflammation in the blood and tissues. Regular consumption of fish oil supplements, tablets, pills, and capsules is helpful to those who suffer from chronic inflammatory diseases. Fish oil is effective in treating gastrointestinal disorders, Celiac disease, short bowel syndrome and inflammatory bowel disease (IBD) including Crohn’s Disease and ulcerative colitis, which are both typical disorders of the intestine. Patients suffering from Crohn’s disease often find it difficult to absorb vitamins, fats, and essential supplements. Fish oil supplements are an effective diet for such patients.
Two psychiatrists (P.-T.T. and T.-Y.C.) separately performed a systematic literature search of the PubMed, Embase, ProQuest, ScienceDirect, Cochrane Library, ClinicalKey, Web of Science, and ClinicalTrials.gov databases to March 4, 2018. Because we presumed some clinical trials would use investigating scales for some other mood symptoms but also contain symptoms of anxiety, we tried to use some nonspecific medical subject heading terms to include those clinical trials. Therefore, we used the following keywords: omega-3, eicosapentaenoic acid, EPA, DHA, or docosahexaenoic acid; and anxiety, anxiety disorder, generalized anxiety disorder, agoraphobia, panic disorder, or posttraumatic stress disorder. After removing duplicate studies, the same 2 authors screened the search results according to the title and abstract to evaluate eligibility. List of potentially relevant studies were generated for a full-text review. Any inconsistencies were discussed with a third author to achieve final consensus. To expand the list of potentially eligible articles, we performed a manual search of the reference lists of review articles in this area.12,38,39
Recent studies have shown that the consumption of fish oil (or, more specifically, the omega-3 fatty acids found in fish oil) can improve fertility in both men and women. DHA, which is a byproduct of omega-3 fatty acids, plays a key role in the mobility of sperm and health of sperm in men. Low blood levels of DHA have been linked to decreased fertility. Animal studies have found that the DHA in fish is vital to changing dysfunctional round-headed sperm into strong swimmers with cone-shaped heads packed with egg-opening proteins. (29)

Arsenault, L. N., Matthan, N., Scott, T. M., Dallal, G., Lichtenstein, A. H., Folstein, M. F., Rosenberg, I., and Tucker, K. L. Validity of estimated dietary eicosapentaenoic acid and docosahexaenoic acid intakes determined by interviewer-administered food frequency questionnaire among older adults with mild-to-moderate cognitive impairment or dementia. Am J Epidemiol 7-1-2009;170(1):95-103. View abstract.


One day I was cooking pasta when the kitchen started to fill with the odor of fish. I happen to hate fish, so this was not a pleasant experience. It was also a mystery, since I never cook fish. A little detective work discovered that the offensive odor was coming from the pasta. Apparently I didn’t notice the “Now with Omega 3” label on the box when I purchased it. My daughter and I still refer to this as the “fish pasta incident”.
Krill oil is a source of omega−3 fatty acids.[116] The effect of krill oil, at a lower dose of EPA + DHA (62.8%), was demonstrated to be similar to that of fish oil on blood lipid levels and markers of inflammation in healthy humans.[117] While not an endangered species, krill are a mainstay of the diets of many ocean-based species including whales, causing environmental and scientific concerns about their sustainability.[118][119][120]
Only fish and breast milk contain all the members of the omega-3 family, including its two main stars, EPA and DHA. Because Americans as a rule consume far too few omega-3s from fish or fish oil, it’s no surprise that the majority of Americans have low omega-3 index levels as well. A recent study of global omega-3 index levels found that an estimated 95% of Americans (with the exception of folks from Alaska) had an omega-3 index of 4 or below, putting them in the high risk category (5, 6, 7).
AAKG β-hydroxy β-methylbutyrate Carnitine Chondroitin sulfate Cod liver oil Copper gluconate Creatine/Creatine supplements Dietary fiber Echinacea Elemental calcium Ephedra Fish oil Folic acid Ginseng Glucosamine Glutamine Grape seed extract Guarana Iron supplements Japanese Honeysuckle Krill oil Lingzhi Linseed oil Lipoic acid Milk thistle Melatonin Red yeast rice Royal jelly Saw palmetto Spirulina St John's wort Taurine Wheatgrass Wolfberry Yohimbine Zinc gluconate
Reduce Metabolic Syndrome Symptoms: The cluster of risk factors known as metabolic syndrome includes abdominal obesity, high blood sugar, high triglycerides, high blood pressure and low HDL cholesterol. These risk factors are indicative of a high chance you might develop heart disease, stroke or diabetes. Multiple studies have found omega-3 supplementation improve the symptoms of metabolic syndrome and may help to protect you from the related diseases. (22, 23, 24, 25)
In comparison, the omega-3s found in krill appear to be more rapidly incorporated into red blood cell phospholipids.7 This is important, because not only do scientists view the uptake of essential fatty acids in red blood cells as a biomarker for uptake into the brain,8 but additional research suggests that when omega-3 fatty acids such as DHA are bound to phospholipids as they are with krill, it increases their uptake to the brain.9 This is further supported by human clinical research, which suggests ingestion of phospholipid-bound EPA and DHA increase cognitive function scores to a greater degree compared with scores obtained when the fatty acids in the ingested oil were provided in the triglycerides storage form.10

In a study published after the AHRQ report, scientists in Denmark gave high-dose fish oil supplements or placebos to 736 pregnant women during the third trimester of pregnancy. Children born to mothers who had taken fish oil were less likely to develop asthma or persistent wheezing in early childhood, and this was most noticeable in children whose mothers had low blood levels of EPA and DHA before they started to take the supplements. However, other studies that evaluated the effects of omega-3 supplementation during pregnancy on childhood asthma risk have had inconsistent results.
If you’ve been paying attention to health headlines over the last few decades, you’ve likely heard about essential fatty acids (EFAs) — specifically omega-3s and omega-6s. These nutrients play many vital roles in supporting our overall health, including increasing nutrient absorption, ensuring proper growth and development of the brain and nervous system, and reducing the risk of chronic illnesses, such as heart disease.  Click here for a guide to understanding omega-3 and omega-6 fatty acids and how they influence your health.
Increased EPA levels in the blood and cell membranes effectively regulates inflammatory pathways and reduces total inflammatory ‘load’, so for any inflammatory conditions or concerns, we recommend a phase of pure EPA supplementation for at least 3-6 months. Pre-loading the body with pure EPA (without the opposing actions of DHA for uptake and utilisation) ensures constant replenishment of EPA ’supplies’ to support its high rate of turnover. Since DHA levels remain fairly stable and much lower daily amounts are required, DHA levels can be supported continually through dietary intake, or increased to 250 mg daily in later stages of treatment through supplementation.

Not all forms of fish oil may be equally digestible. Of four studies that compare bioavailability of the glyceryl ester form of fish oil vs. the ethyl ester form, two have concluded the natural glyceryl ester form is better, and the other two studies did not find a significant difference. No studies have shown the ethyl ester form to be superior, although it is cheaper to manufacture.[114][115]
The use of DHA by persons with epilepsy could decrease the frequency of their seizures. Studies have shown that children with epilepsy had a major improvement, i.e. decrease in the frequency of their seizures, but another study showed mixed results with 57 adults taking DHA supplementation. The 57 subjects demonstrated a decreased frequency of seizures for the first six weeks of the study, but for some, it was just a temporary improvement (R).
Muñoz MA, Liu W, Delaney JA, Brown E, Mugavero MJ, Mathews WC, Napravnik S, Willig JH, Eron JJ, Hunt PW, Kahn JO, Saag MS, Kitahata MM, Crane HM. Comparative effectiveness of fish oil versus fenofibrate, gemfibrozil, and atorvastatin on lowering triglyceride levels among HIV-infected patients in routine clinical care. J Acquir Immune Defic Syndr 2013;64(3):254-60. View abstract.
After just seven days, those supplementing with krill had their CRP levels reduced by 19.3%, while in the placebo group, CRP levels rose by 15.7%. Even more impressive, the krill benefit was long-lasting. The krill group’s CRP levels continued to fall by 29.7% at 14 days, and 30.9% at 30 days. More importantly from the patients’ points of view, the krill oil supplement reduced pain scores by 28.9%, reduced stiffness by 20.3%, and reduced functional impairment by 22.8%.
Human studies also confirm cognition and memory improvement with omega-3 supplementation. For example, a study showed that both fish oil and krill oil enhanced cognitive function in a group of older men by increasing oxygen delivery to their brains. Interestingly, for those taking krill oil this effect was more prominent than those taking fish oil, though both groups were significantly better than placebo.30 As we pointed out earlier, because the omega-3 DHA is bound to phospholipids in krill it may be more effectively incorporated into the critical cell membrane in brain cells.
Fish oil is also used for diabetes, prediabetes, asthma, a movement and coordination disorder called dyspraxia, dyslexia, eczema, autism, obesity, weak bones (osteoporosis), rheumatoid arthritis (RA), osteoarthritis, psoriasis, an autoimmune disease called systemic lupus erythematosus (SLE), multiple sclerosis, HIV/AIDS, cystic fibrosis, gum disease, Lyme disease, sickle cell disease, and preventing weight loss caused by some cancer drugs.
×