The ultimate goal of using omega-3 fatty acids is the reduction of cellular inflammation. Since eicosanoids derived from arachidonic acid (AA), an omega-6 fatty acid, are the primary mediators of cellular inflammation, EPA becomes the most important of the omega-3 fatty acids to reduce cellular inflammation for a number of reasons. First, EPA is an inhibitor of the enzyme delta-5-desaturase (D5D) that produces AA (1). The more EPA you have in the diet, the less AA you produce. This essentially chokes off the supply of AA necessary for the production of pro-inflammatory eicosanoids (prostaglandins, thromboxanes, leukotrienes, etc.). DHA is not an inhibitor of this enzyme because it can’t fit into the active catalytic site of the enzyme due to its larger spatial size. As an additional insurance policy, EPA also competes with AA for the enzyme phospholipase A2 necessary to release AA from the membrane phospholipids (where it is stored). Inhibition of this enzyme is the mechanism of action used by corticosteroids. If you have adequate levels of EPA to compete with AA (i.e. a low AA/EPA ratio), you can realize many of the benefits of corticosteroids but without their side effects. That’s because if you don’t release AA from the cell membrane then you can’t make inflammatory eicosanoids. Because of its increased spatial dimensions, DHA is not a good competitor of phospholipase A2 relative to EPA. On the other hand, EPA and AA are very similar spatially so they are in constant competition for the phospholipase A2 enzyme just as both fatty acids are in constant competition for the delta-5 desaturase enzyme. This is why measuring the AA/EPA ratio is such a powerful predictor of the state of cellular inflammation in your body.
(How much omega-3 is necessary to increase one’s omega-3 index?  Studies show it can take between 1800 – 2000 mg of EPA/DHA daily to move a person’s index by 4 – 5 percentage points (12). Importantly, this is a much larger dose than you’d get swallowing one or two regular fish oil capsules and could well explain why many traditional omega-3 products fail to deliver results.)
Due to the anticipated heterogeneity, a random-effects meta-analysis was chosen rather than a fixed-effects meta-analysis because random-effects modeling is more stringent and incorporates an among-study variance in the calculations. The entire meta-analysis procedure was performed on the platform of Comprehensive Meta-analysis statistical software, version 3 (Biostat). Under the preliminary assumption that the scales for anxiety symptoms are heterogeneous among the recruited studies, we chose Hedges g and 95% confidence intervals to combine the effect sizes, in accordance with the manual of the Comprehensive Meta-analysis statistical software, version 3. Regarding the interpretation of effect sizes, we defined Hedges g values 0 or higher as a better association of treatment with reduced anxiety symptoms of omega-3 PUFAs than in controls. For each analysis, a 2-tailed P value less than .05 was considered to indicate statistical significance. When more than 1 anxiety scale was used in a study, we chose the one with the most informative data (ie, mean and standard deviation [SD] before and after treatment). We entered the primary outcome provided in the included articles or obtained from the original authors. As for the variance imputation, we mainly chose the mean and SD before and after treatment. Later, we entered the mean and SD and calculated the effect sizes based on the software option, standardized by post score SD. In the case of studies with 2 active treatment arms, we merged the 2 active treatment arms into 1 group. If these 2 active treatment arms belonged to different subgroups (ie, different PUFA dosage subgroups), we kept them separate. Regarding the numbers of participants counted, we chose intention-to-treat as our priority. If there were insufficient data in the intention to treat group (ie, some studies only provided the changes in anxiety severity in those participants completing trials), we chose instead the per-protocol numbers of participants.
A 2008 meta-study by the Canadian Medical Association Journal found fish oil supplementation did not demonstrate any preventative benefit to cardiac patients with ventricular arrhythmias.[36] A 2012 meta-analysis published in the Journal of the American Medical Association, covering 20 studies and 68,680 patients, found that Omega-3 Fatty Acid supplementation did not reduce the chance of death, cardiac death, heart attack or stroke.[37]
Animal studies show potent reduction of liver fat stores, glucose levels, and cholesterol levels in mice supplemented with krill oil while being fed a high fat diet.64,65 While many of these effects are seen with fish oil as well, studies show that krill oil, with its unique phospholipid structure, had the added benefit of increasing fat-burning in mitochondria while reducing new glucose production in the liver.66,67 As with so many other complex disease processes, utilizing multiple pathways to reduce disease is a highly effective strategy.67
Irish AB, Viecelli AK, Hawley CM, et al; Omega-3 Fatty Acids (Fish Oils) and Aspirin in Vascular Access Outcomes in Renal Disease (FAVOURED) Study Collaborative Group. Effect of fish oil supplementation and aspirin use on arteriovenous fistula failure in patients requiring hemodialysis: A randomized clinical trial. JAMA Intern Med. 2017;177(2):184-193. View abstract.
Pay attention to the quality of fish oil when purchasing it. It is obtained from almost all fishes – fresh water, farm, ocean, deep sea and shallow sea fish. All these fishes can be contaminated with toxic compounds such as mercury, arsenic, lead, forms of calcium, furans, dioxins, PCBs, and methylmercury, and can negatively affect the human body. Therefore, the fish oil used must be pure. Many companies sell ultra refined or distilled fish oil, but you should always check if the standards have been followed and research on the company or the product before adding it to your diet.
A 2012 study involved children from 6 to 12 years of age with ADHD who were being treated with methylphenidate and standard behavior therapy for more than six months. The parents of these children reported no improvement in behavior and academic learning using these standard treatments. The researchers randomly gave some of the children an omega-3 and omega-6 acid supplementation or a placebo. They found “statistically significant improvement” for the omega group in the following categories: restlessness, aggressiveness, completing work and academic performance. (5)

Thusgaard, M., Christensen, J. H., Morn, B., Andersen, T. S., Vige, R., Arildsen, H., Schmidt, E. B., and Nielsen, H. Effect of fish oil (n-3 polyunsaturated fatty acids) on plasma lipids, lipoproteins and inflammatory markers in HIV-infected patients treated with antiretroviral therapy: a randomized, double-blind, placebo-controlled study. Scand.J.Infect.Dis. 2009;41(10):760-766. View abstract.


Heart rate variability, a possible surrogate outcome for the risk of sudden death, was assessed in a randomized trial of myocardial infarction (MI) survivors with an ejection fraction of 40%. In the 49 patients that were randomized to either fish oil or olive oil, Holter monitor recordings showed an increase in heart rate variability in the fish oil group.31 In a larger cohort assessed in the Japan EPA Lipid Intervention Study (JELIS),32 however, no difference in heart rate variability could be attributed to fish oil.

Growing up, Joe was plagued with a myriad of health issues such as gut problems, autoimmune issues, chronic fatigue, brain fog, insomnia, and general inflammation. Both conventional and alternative doctors weren’t able to help him, so he decided to fix himself. With lots of health questions and few satisfying answers, Joe decided to read every research paper he could get his hands on and conduct thousands of experiments on his own body in order to fix his health issues. Joe started SelfHacked in late 2013 when he successfully fixed all of his issues, and now it gets millions of readers a month looking to educate themselves about how they can improve their health. Joe is now a thriving author, speaker, and serial entrepreneur, founding SelfDecode & LabTestAnalyzer.

We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months’ duration and included adults at varying cardiovascular risk, mainly in high‐income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3‐ or ALA‐rich or enriched foods or dietary advice compared to placebo or usual diet.
Brand Names: Animi-3, Cardio Omega Benefits, Divista, Dry Eye Omega Benefits, EPA Fish Oil, Fish Oil, Fish Oil Ultra, Flex Omega Benefits, Icar Prenatal Essential Omega-3, Lovaza, Marine Lipid Concentrate, MaxEPA, MaxiTears Dry Eye Formula, MaxiVision Omega-3 Formula, Mi-Omega NF, Mom's Omega Advantage, Omega Essentials, Sea-Omega, Sea-Omega 30, TheraTears Nutrition, TherOmega, Vascazen
According to the Cardiovascular Research Institute in Maastricht in Netherlands, “Epidemiological studies show that replacing fat with carbohydrates may even be worse [than the Western-type high-fat diet] and that various polyunsaturated fatty acids (FA) have beneficial rather than detrimental effects on CVD (cardiovascular disease) outcome.” This includes fish-oil fatty acids with anti-inflammatory properties, which can help prevent and reverse a plethora of cardiovascular diseases. (19)
The number of presenters and the amount of information stuffed into an action-packed few days at times felt overwhelming, even for two dedicated omega-3 enthusiasts like us. But one important message did hit home: The omega-3 index could be a helpful indicator of various health risks, and we should all be paying closer attention to this measurement.
Other suspected health benefits of omega-3s and fish are less well established and need further study. They include suggestions of a reduced risk of breast cancer, colorectal cancer and possibly advanced prostate cancer, all related to eating fish rather than taking supplements. Some observational studies have associated omega-3s to a lower risk of cognitive decline, Alzheimer’s disease and dementia, as well as age-related macular degeneration.
Here is a brief on omega-3 fatty acids: There are three types of omega-3 fatty acids, namely alpha-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). All three are important for the body. Vegetable sources, including flaxseed oil, soybean oil, hemp oil, canola oil, walnut oil, rapeseed, perilla, chia, and tofu are rich in ALA. The human body has the ability to convert ALA to DHA and EPA, though there are certain limitations to this conversion.
Drugs.com provides accurate and independent information on more than 24,000 prescription drugs, over-the-counter medicines and natural products. This material is provided for educational purposes only and is not intended for medical advice, diagnosis or treatment. Data sources include Micromedex® (updated Oct 1st, 2018), Cerner Multum™ (updated Oct 2nd, 2018), Wolters Kluwer™ (updated Oct 2nd, 2018) and others. To view content sources and attributions, please refer to our editorial policy.

"All these diseases have a common genesis in inflammation," says Joseph C. Maroon, MD, professor and vice chairman of the department of neurological surgery at the University of Pittsburgh School of Medicine. Co-author of Fish Oil: The Natural Anti-Inflammatory, Maroon says that in large enough amountsomega-3's reduce the inflammatory process that leads to many chronic conditions.
The chemical structures of EPA and DHA are very similar and they compete for uptake and processing resources. During digestion, the triglyceride molecules in standard fish oil are broken down into a mono glycerol and two free fatty acids, small enough to be absorbed into cells of the gut lining. More often than not, DHA is the fatty acid that remains attached to the glycerol backbone, meaning in essence that DHA gets a ‘free pass’ into the gut, while the remaining free fatty acids (more often EPA) must reattach onto a glycerol molecule or risk being oxidised and used as fuel. The implication of this is that DHA levels in our cells are often concentrated at the expense of EPA after absorption when taking EPA and DHA in the standard ratio of 1.5 to 1.
Although there are no randomized data on fish oil consumption and protection from sudden death, observational studies have linked omega-3 FA with the prevention of sudden death. In a population-based, case-control study of sudden cardiac death victims, the mean red blood cell membrane omega-3 FA level of the lowest quartile, when compared with the mean level of the third quartile, was associated with a relative risk reduction of 70%.33 A similar finding was appreciated in a nested, prospective, case-control study of the Physician Health Study cohort of 22,000 healthy males. In the 119 patients that succumbed to sudden death, baseline omega-3 FA blood levels were significantly lower than in matched controls.34 Finally, in an analysis of data from the Nurses Health Study, a cohort study of 84,688 women, an inverse association was shown between fish consumption and CAD-related death. The investigators concluded that the reduction in CAD deaths was likely due to a reduction in sudden deaths, as there was no difference in the rate of MI when comparing high and low fish consumption.35

Omega AD study, Irving et al. (54)	Double-blind, placebo-controlled, randomized	1741	DHA (1.7 g/d) and EPA (0.6 g/d) for 6 mo, then for all subjects (supplementation group and placebo group)	Supplementation was associated with positive weight gain and appetite in supplementation group at 6 mo, but not in the placebo group, and for both groups at 12 mo

There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.

As always with such trials, you can never prove zero benefit (or zero risk), but an essentially negative trial or meta-analysis sets statistical limits on the size of any remaining plausible effect. What we can now say with a fairly high degree of confidence is that any health benefit from consuming omega-3 fatty acids is tiny, probably too small to warrant supplementing (or adding it to pasta).
The supplements contain omega-3 fatty acids, the polyunsaturated oils prominent in fatty cold water fish like salmon, sardines and mackerel. In many observational studies, people who regularly consumed fish two or more times a week were less likely to suffer heart attacks, strokes and cardiovascular deaths than those who ate fish infrequently or not at all.
DHA is vital for early brain development and maintenance, while EPA seems to be closely related to behavior and mood. Together, both molecules provide critical neuroprotective benefits.11 These neuroprotective effects are important for the prevention of age-related brain shrinkage (cortical atrophy). Aging adults with brain shrinkage often experience memory loss, cognitive decline, and an increase in depression.12-14
High triglycerides. Most research shows that fish oil from supplements and food sources can reduce triglyceride levels. The effects of fish oil appear to be the greatest in people who have very high triglyceride levels. Also the amount of fish oil consumed seems to directly affect how much triglyceride levels are reduced. Some fish oil supplements including Lovaza, Omtryg, and Epanova have been approved by the FDA to lower triglycerides.
×