Animal studies show potent reduction of liver fat stores, glucose levels, and cholesterol levels in mice supplemented with krill oil while being fed a high fat diet.64,65 While many of these effects are seen with fish oil as well, studies show that krill oil, with its unique phospholipid structure, had the added benefit of increasing fat-burning in mitochondria while reducing new glucose production in the liver.66,67 As with so many other complex disease processes, utilizing multiple pathways to reduce disease is a highly effective strategy.67
Increased EPA levels in the blood and cell membranes effectively regulates inflammatory pathways and reduces total inflammatory ‘load’, so for any inflammatory conditions or concerns, we recommend a phase of pure EPA supplementation for at least 3-6 months. Pre-loading the body with pure EPA (without the opposing actions of DHA for uptake and utilisation) ensures constant replenishment of EPA ’supplies’ to support its high rate of turnover. Since DHA levels remain fairly stable and much lower daily amounts are required, DHA levels can be supported continually through dietary intake, or increased to 250 mg daily in later stages of treatment through supplementation.
Australian researchers published results of a study examining the effects of fish oil on weight loss in combination with diet and exercise in the May 2007 issue of American Journal of Clinical Nutrition. The results show that a combination of fish oil supplements and regular exercise can reduce body fat while also improving heart and metabolic health. The fish supplementation group had lowered triglycerides, increased HDL cholesterol and improved blood flow. Overall, adding fish oil to a current exercise program (and a overall healthy lifestyle) looks like it can decrease body fat as well as cardiovascular disease risk. (32)

A tremendous body of research has been conducted on these important nutrients since it was first discovered in the 1950s that fish oil offered many health benefits and that these benefits were attributable to a type of polyunsaturated fat called omega-3. Despite the volumes of research on omega-3s, it is only in recent years (within the last 15 years or so) that the actions of EPA and DHA have come to be understood individually. Researchers now often investigate the actions of EPA and DHA individually rather than together, no longer simply under the generic label omega-3 as they are widely referred to.
This systematic review and meta-analysis of clinical trials conducted on participants with clinical anxiety symptoms provides the first meta-analytic evidence, to our knowledge, that omega-3 PUFA treatment may be associated with anxiety reduction, which might not only be due to a potential placebo effect, but also from some associations of treatment with reduced anxiety symptoms. The beneficial anxiolytic effects of omega-3 PUFAs might be stronger in participants with specific clinical diagnoses than in those without specific clinical conditions. Larger and well-designed clinical trials should be performed with high-dose omega-3 PUFAs, provided as monotherapy and as adjunctive treatment to standard therapy.

In our analysis, most of the included studies showed a positive Hedges g toward a beneficial effect of omega-3 PUFAs in anxiety reduction, although not all findings were statistically significant. However, after merging of these effect sizes from all of the included studies, the main result showed significant findings in our meta-analysis. Despite the significant heterogeneity, no significant publication bias was found among these 19 studies.
Evidence in the population generally does not support a beneficial role for omega−3 fatty acid supplementation in preventing cardiovascular disease (including myocardial infarction and sudden cardiac death) or stroke.[4][19][20][21] A 2018 meta-analysis found no support that daily intake of one gram of omega-3 fatty acid in individuals with a history of coronary heart disease prevents fatal coronary heart disease, nonfatal myocardial infarction or any other vascular event.[6] However, omega−3 fatty acid supplementation greater than one gram daily for at least a year may be protective against cardiac death, sudden death, and myocardial infarction in people who have a history of cardiovascular disease.[22] No protective effect against the development of stroke or all-cause mortality was seen in this population.[22] Eating a diet high in fish that contain long chain omega−3 fatty acids does appear to decrease the risk of stroke.[23] Fish oil supplementation has not been shown to benefit revascularization or abnormal heart rhythms and has no effect on heart failure hospital admission rates.[24] Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes.[7]
More than 30 clinical trials have tested different omega-3 preparations in people with depression. Most studies have used omega-3s as add-on therapy for people who are taking prescription antidepressants with limited or no benefit. Fewer studies have examined omega-3 therapy alone. Clinical trials typically use EPA alone or a combination of EPA plus DHA, at doses from 0.5 to 1 gram per day to 6 to 10 grams per day. To give some perspective, 1 gram per day would correspond to eating three salmon meals per week.
Although there are no randomized data on fish oil consumption and protection from sudden death, observational studies have linked omega-3 FA with the prevention of sudden death. In a population-based, case-control study of sudden cardiac death victims, the mean red blood cell membrane omega-3 FA level of the lowest quartile, when compared with the mean level of the third quartile, was associated with a relative risk reduction of 70%.33 A similar finding was appreciated in a nested, prospective, case-control study of the Physician Health Study cohort of 22,000 healthy males. In the 119 patients that succumbed to sudden death, baseline omega-3 FA blood levels were significantly lower than in matched controls.34 Finally, in an analysis of data from the Nurses Health Study, a cohort study of 84,688 women, an inverse association was shown between fish consumption and CAD-related death. The investigators concluded that the reduction in CAD deaths was likely due to a reduction in sudden deaths, as there was no difference in the rate of MI when comparing high and low fish consumption.35
A 2009 metastudy found that patients taking omega-3 supplements with a higher EPA:DHA ratio experienced fewer depressive symptoms. The studies provided evidence that EPA may be more efficacious than DHA in treating depression. However, this metastudy concluded that due to the identified limitations of the included studies, larger, randomized trials are needed to confirm these findings.[40]
Typical Western diets provide ratios of between 10:1 and 30:1 (i.e., dramatically higher levels of omega−6 than omega−3).[92] The ratios of omega−6 to omega−3 fatty acids in some common vegetable oils are: canola 2:1, hemp 2–3:1,[93] soybean 7:1, olive 3–13:1, sunflower (no omega−3), flax 1:3,[94] cottonseed (almost no omega−3), peanut (no omega−3), grapeseed oil (almost no omega−3) and corn oil 46:1.[95]
Boucher, O., Burden, M. J., Muckle, G., Saint-Amour, D., Ayotte, P., Dewailly, E. ... Jacobson, J. L.. (2011, May). Neurophysiologic and neurobehavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age. American Journal of Clinical Nutrition 93(5), 1025-1037. Retrieved from http://ajcn.nutrition.org/content/93/5/1025.full
Fish oil can be obtained from eating fish or by taking supplements. Fish that are especially rich in the beneficial oils known as omega-3 fatty acids include mackerel, herring, tuna, salmon, cod liver, whale blubber, and seal blubber. Two of the most important omega-3 fatty acids contained in fish oil are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Make sure to see separate listings on EPA and DHA, as well as Cod Liver Oil, and Shark Liver Oil.
×