16. Saito Y, Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, et al. Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention Study (JELIS). Atherosclerosis. 2008;200:135–40. [PubMed]

A 2014 meta-analysis of eleven trials conducted respectively on patients with a DSM-defined diagnosis of major depressive disorder (MDD) and of eight trials with patients with depressive symptomatology but no diagnosis of MDD demonstrated significant clinical benefit of omega-3 PUFA treatment compared to placebo. The study concluded that: "The use of omega-3 PUFA is effective in patients with diagnosis of MDD and on depressive patients without diagnosis of MDD."[42]
Due to the anticipated heterogeneity, a random-effects meta-analysis was chosen rather than a fixed-effects meta-analysis because random-effects modeling is more stringent and incorporates an among-study variance in the calculations. The entire meta-analysis procedure was performed on the platform of Comprehensive Meta-analysis statistical software, version 3 (Biostat). Under the preliminary assumption that the scales for anxiety symptoms are heterogeneous among the recruited studies, we chose Hedges g and 95% confidence intervals to combine the effect sizes, in accordance with the manual of the Comprehensive Meta-analysis statistical software, version 3. Regarding the interpretation of effect sizes, we defined Hedges g values 0 or higher as a better association of treatment with reduced anxiety symptoms of omega-3 PUFAs than in controls. For each analysis, a 2-tailed P value less than .05 was considered to indicate statistical significance. When more than 1 anxiety scale was used in a study, we chose the one with the most informative data (ie, mean and standard deviation [SD] before and after treatment). We entered the primary outcome provided in the included articles or obtained from the original authors. As for the variance imputation, we mainly chose the mean and SD before and after treatment. Later, we entered the mean and SD and calculated the effect sizes based on the software option, standardized by post score SD. In the case of studies with 2 active treatment arms, we merged the 2 active treatment arms into 1 group. If these 2 active treatment arms belonged to different subgroups (ie, different PUFA dosage subgroups), we kept them separate. Regarding the numbers of participants counted, we chose intention-to-treat as our priority. If there were insufficient data in the intention to treat group (ie, some studies only provided the changes in anxiety severity in those participants completing trials), we chose instead the per-protocol numbers of participants.
EPA is the precursor to DHA in the body and can be converted to DHA with the enzyme delta-6 desaturase, but this process is inefficient in many people (much like the inefficiency of short-chain omega-3s to long-chain). For those individuals taking pure EPA products as well as those taking our EPA-rich products, we still recommend eating oily fish at least once each week to provide a natural source of DHA. Fish provides a unique nutritional package, supplying the diet with important amino acids (the building blocks of proteins) and antioxidants, including vitamins and minerals needed to process fats, so eating fish will also support the natural enzyme-dependent EPA to DHA conversion.

Thank you for your kind comment. As pointed out above, the main limitation of our meta-analysis is the heterogeneity, which we address several times in our main manuscript. We included studies with several different situations and participants with different underlying diseases, which would also result in wide heterogeneity in our meta-analysis. Based upon our post-hoc analysis, there was some common characteristics among the six trials with nominally significant results, including specific clinical diagnoses (5/6) and, placebo-control (4/6), which had also previously been addressed in our subgroup meta-analysis. Therefore, we suggested future placebo-controlled trials investigating the treatment effect of omega-3 in participants with specific clinical diagnoses should be warranted. In addition, improving underlying specific clinical diagnoses (5/6), good quality (placebo-control (4/6), low drop-out rate (zero in Exp/control groups: 4/6)), and long treatment duration (>= 12 weeks: 4/6) are all good indicators of high quality.
There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.
In addition to depression, chronic stress leads to loss of volume of the hippocampus—and also causes enlargement of the amygdala, the portion of the brain that regulates anxiety and anger.24 When rats were supplemented with omega-3s during exposure to stress, they showed lower corticosterone levels (a marker of stress), and improved learning on a maze—indicating that the omega-3s helped preserve memory and reduce anxiety.24

Cashew nuts are a versatile, creamy nut, eaten on their own as a snack or used as a base for many vegan cheese substitutes. RXBAR, a healthy alternative to the standard sugar-loaded snack bar, uses cashews for several of its flavor varieties. And with delicious (and kid-friendly!) flavors like gingerbread, chocolate chip, or “Berry Blast,” these bars are a tasty way to add more cashews to any diet.


For those who do not eat seafood, another way exists for you to get a healthy dose of EPA and DHA each day. Fish oil supplements, which are rich in EPA and DHA, can be made from a variety of fish, with the most common ones being halibut, tuna, salmon, cod liver, mackerel and herring. On average, one 3.5 ounce serving of fatty fish contains about 1 gram of omega-3s, which can be obtained through fish oil supplements, according to MedlinePlus.
Fish oil is effective in reducing inflammation in the blood and tissues. Regular consumption of fish oil supplements, tablets, pills, and capsules is helpful to those who suffer from chronic inflammatory diseases. Fish oil is effective in treating gastrointestinal disorders, Celiac disease, short bowel syndrome and inflammatory bowel disease (IBD) including Crohn’s Disease and ulcerative colitis, which are both typical disorders of the intestine. Patients suffering from Crohn’s disease often find it difficult to absorb vitamins, fats, and essential supplements. Fish oil supplements are an effective diet for such patients.
Disclaimer: The entire contents of this website are based upon the opinions of Dr. Mercola, unless otherwise noted. Individual articles are based upon the opinions of the respective author, who retains copyright as marked. The information on this website is not intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice. It is intended as a sharing of knowledge and information from the research and experience of Dr. Mercola and his community. Dr. Mercola encourages you to make your own health care decisions based upon your research and in partnership with a qualified health care professional. If you are pregnant, nursing, taking medication, or have a medical condition, consult your health care professional before using products based on this content.
If you find yourself in a position where you are just not eating any of these foods, and you want to get enough omega-3 fatty acids, then I think fish oil is okay, but I would limit not the amount of fish oil but the amount listed on the label of EPA and DHA combined. I would limit that amount to around 250 milligrams per day because I don’t think most people need more than that. Some signs that you might not be getting enough omega-3 fatty acids include chronic low-grade inflammation, poor visual acuity, slower mental processing, trouble learning, and possibly Alzheimer’s disease and psychiatric conditions, like depression, anxiety, and attention deficit and hyperactivity disorder, ADHD.

An animal study involving the omega-3 ETA discovered that subjects experienced a drop in overall inflammation similar to that caused by NSAIDs (non-steroidal anti-inflammatory drugs), but without the dangerous gastrointestinal side effects. The study authors also pointed out that eicosapentaenoic acid seems to be even more potent than the conventional omega-3s found in fish oil supplements (EPA/DHA). (56)
For slowing weight loss in patients with cancer: 30 mL of a specific fish oil product (ACO Omega-3, Pharmacia, Stockholm, Sweden) providing 4.9 grams of EPA and 3.2 grams of DHA daily for 4 weeks has been used. 7.5 grams of fish oil daily providing EPA 4.7 grams and DHA 2.8 grams has been used for about 6 weeks. In addition, two cans of a fish oil nutritional supplement containing 1.09 grams of EPA and 0.96 grams of DHA per can have been used daily for up to 7 weeks.
Findings  In this systematic review and meta-analysis of 19 clinical trials including 2240 participants from 11 countries, improvement in anxiety symptoms was associated with omega-3 polyunsaturated fatty acid treatment compared with controls in both placebo-controlled and non–placebo-controlled trials. The anxiolytic effects of omega-3 polyunsaturated fatty acids were also stronger in participants with clinical conditions than in subclinical populations.
Omega−3 fatty acids, also called ω−3 fatty acids or n−3 fatty acids,[1] are polyunsaturated fatty acids (PUFAs).[2][3] The fatty acids have two ends, the carboxylic acid (-COOH) end, which is considered the beginning of the chain, thus "alpha", and the methyl (-CH3) end, which is considered the "tail" of the chain, thus "omega". One way in which a fatty acid is named is determined by the location of the first double bond, counted from the tail, that is, the omega (ω-) or the n- end. Thus, in omega-3 fatty acids the first double bond is between the third and fourth carbon atoms from the tail end. However, the standard (IUPAC) chemical nomenclature system starts from the carboxyl end.

Pregnancy and breast-feeding: Fish oil is LIKELY SAFE when taken by mouth appropriately. Taking fish oil during pregnancy does not seem to affect the fetus or baby while breast-feeding. Women who are pregnant or who may become pregnant, and nursing mothers should avoid shark, swordfish, king mackerel, and tilefish (also called golden bass or golden snapper), as these may contain high levels of mercury. Limit consumption of other fish to 12 ounces/week (about 3 to 4 servings/week). Fish oil is POSSIBLY UNSAFE when dietary sources are consumed in large amounts. Fatty fish contain toxins such as mercury.
Both omega−6 and omega−3 fatty acids are essential: humans must consume them in their diet. Omega−6 and omega−3 eighteen-carbon polyunsaturated fatty acids compete for the same metabolic enzymes, thus the omega−6:omega−3 ratio of ingested fatty acids has significant influence on the ratio and rate of production of eicosanoids, a group of hormones intimately involved in the body's inflammatory and homeostatic processes, which include the prostaglandins, leukotrienes, and thromboxanes, among others. Altering this ratio can change the body's metabolic and inflammatory state.[16] In general, grass-fed animals accumulate more omega−3 than do grain-fed animals, which accumulate relatively more omega−6.[86] Metabolites of omega−6 are more inflammatory (esp. arachidonic acid) than those of omega−3. This necessitates that omega−6 and omega−3 be consumed in a balanced proportion; healthy ratios of omega−6:omega−3, according to some authors, range from 1:1 to 1:4.[87] Other authors believe that a ratio of 4:1 (4 times as much omega−6 as omega−3) is already healthy.[88][89] Studies suggest the evolutionary human diet, rich in game animals, seafood, and other sources of omega−3, may have provided such a ratio.[90][91]
The human body can make most of the types of fats it needs from other fats or raw materials. That isn’t the case for omega-3 fatty acids (also called omega-3 fats and n-3 fats). These are essential fats—the body can’t make them from scratch but must get them from food. Foods high in Omega-3 include fish, vegetable oils, nuts (especially walnuts), flax seeds, flaxseed oil, and leafy vegetables.
The most widely available dietary source of EPA and DHA is cold-water oily fish, such as salmon, herring, mackerel, anchovies, and sardines. Oils from these fish have a profile of around seven times as much omega-3 oils as omega-6 oils. Other oily fish, such as tuna, also contain omega-3 in somewhat lesser amounts. Although fish is a dietary source of omega-3 oils, fish do not synthesize them; they obtain them from the algae (microalgae in particular) or plankton in their diets.[22]
This article had several limitations and the findings need to be considered with caution. First, our participant population is too heterogeneous because of our broad inclusion criteria, which might be true if considering current Diagnostic and Statistical Manual of Mental Disorders or International Classification of Diseases diagnostic systems. However, the novel Research Domain Criteria consider anxiety to be one of the major domains in Negative Valence Systems. Trials should be conducted in populations in which anxiety is the main symptom irrespective of the presence or absence of diagnosis of anxiety disorder. Second, because of the limited number of recruited studies and their modest sample sizes, the results should not be extrapolated without careful consideration. Third, the significant heterogeneity among the included studies (Cochran Q, 178.820; df, 18; I2, 89.934%; P < .001) with potential influence by some outlier studies, such as the studies by Sohrabi et al56 and Yehuda et al,61 would be another major concern. Therefore, clinicians should pay attention to this aspect when applying the results of the current meta-analysis to clinical practice, particularly when considering the subgroups of these 2 studies (ie, subgroups with specific clinical diagnoses, with <2000 mg/d, with EPA <60%, and with placebo-controlled trials).
Finally, in order for AA to be converted into inflammatory products it must be released from phospholipids (part of the cell membrane) using the enzyme phospholipase A2 and then converted by the enzyme cyclooxygenase. EPA utilises both of these enzymes, so if EPA levels are increased in the diet, it attracts enzyme away from AA to EPA – again giving rise to anti-inflammatory products instead of inflammatory ones.
Dornstauder, B., Suh, M., Kuny, S., Gaillard, F., MacDonald, I., Michael T. Clandinin, M. T., & Sauvé, Y. (2012, June). Dietary docosahexaenoic acid supplementation prevents age-related functional losses and A2E accumulation in the retina. Investigative Ophthalmology and Visual Science. Retrieved from http://iovs.arvojournals.org/article.aspx?articleid=2188773
Sekikawa, A., Curb, D., Ueshima, H., El-Saed, A., Kadowaki, T., Abbott, R. D., ... Kuller, L. H. (2008 August 5). Marine-derived n-3 fatty acids and atherosclerosis in Japanese, Japanese Americans, and Whites: a cross-sectional study. Journal of the American College of Cardiology 52(6), 417–424. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736602/

Many studies show that eating fatty fish and other types of seafood as part of a healthy eating pattern helps keep your heart healthy and helps protect you from many heart problems. Getting more EPA or DHA from foods lowers triglyceride levels, for example. Omega-3 dietary supplements can also help lower triglyceride levels, but it is not clear whether omega-3 supplements protect you from most heart problems.
The reason why fish oil could increase a man’s risk of prostate cancer is IMBALANCE. Like I said earlier, omega-6 fatty acids aren’t bad for you. In fact, if your diet contains too many omega-3 fatty acids, your immune system wouldn’t work very well because omega-3 and omega-6 fatty acids are meant to work in a system of checks and balances. Omega-3 fatty acids suppress inflammation, and omega-6 fatty acids promote inflammation, which actually supports your body’s natural system of defense like activating your white blood cells.

The benefits of omega-3 fatty acids (EPA and DHA), which are found in fish oil, have been supported by repeated double-blind clinical trials. In 2004, the FDA announced qualified health claims for omega-3 fatty acids, noting supportive but not conclusive research that shows that consuming EPA and DHA omega-3 fatty acids may reduce the risk of coronary heart disease. Our Fish Oil includes 200mg of omega-3 fatty acids from EPA and DHA.

In some cases, fish oil pills may cause loose stools, nausea, diarrhea, and decreased appetite, fat in the stools, vomiting or constipation. These side effects can be minimized by taking a fish oil capsule that is coated, which is designed to help eliminate the "fish burps" many users complain about. Starting with low doses of the supplement and working up to a full dose can also help minimize side effects. You can also pair fish oil supplements with meals so that they enter your body more slowly, minimizing the risk of side effects occurring.


Three randomized trials assessing more than 600 patients with known malignant ventricular arrhythmia were carried out under the protection of implanted cardioverter defibrillator (ICD) therapy.41–43 In all 3 of the trials, 75% of the patients had ischemic heart disease, survived ventricular tachycardia or ventricular fibrillation and were randomized to 1 to 3 g/d of fish oil. In the first trial of its kind, 402 patients with ICDs were randomized to either a fish oil or an olive oil supplement.41 Although statistical significance was not reached, after approximately 1 year the primary end-point of time to first ICD cardioversion for ventricular tachycardia or fibrillation or death from any cause was longer in the fish oil group. This finding was not replicated in a trial of 200 patients who were randomized to either fish oil or a placebo and followed for a median of approximately 2 years.42 In fact, time to first ICD cardioversion was not changed and the incidence of recurrent ventricular tachycardia and fibrillation was more common in the group assigned to fish oil. In the largest trial, 546 patients were randomized to supplemental fish oil or a placebo and were followed for a mean period of 1 year.43 The primary outcome of the rate of ICD cardioversion or all-cause mortality was not reduced. It was concluded in a recent meta-analysis of these trials that fish oil did not have a protective effect.44
Dangour, A. D., Allen, E., Elbourne, D., Fasey, N., Fletcher, A. E., Hardy, P., Holder, G. E., Knight, R., Letley, L., Richards, M., and Uauy, R. Effect of 2-y n-3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind, controlled trial. Am.J.Clin.Nutr. 2010;91(6):1725-1732. View abstract.
For several years now, the fish oil and Alzheimer’s disease connection has been studied with consistent results. The essential fatty acids vital for brain function that are found in fish oil can not only slow cognitive decline, but can help prevent brain atrophy in older adults. A study published in the FASEB Journal looked at the health effects of four- to 17-month dietary supplementation with omega-3 fatty acids and antioxidants. The findings once again confirm the potential for fish oil to be used as a weapon to fend off the onset of cognitive decline and Alzheimer’s disease. (8)
Special attention should also be given to the fact that most women have major deficiencies of omega-3. A 1991 study at the Mayo Clinic focused on 19 "normal" pregnant women consuming "normal diets," and it showed that all were deficient in omega-3 fats. Another study compared Inuit (Eskimo) women to Canadian women, and it revealed omega-3 deficiency in the milk of the Canadian nursing moms.
There’s more good news when it comes to fish oil and eye health, and it’s just not just for diabetic this time. Fish oil has been shown to reverse age-related eye disorders. In March 2014, French researchers evaluated 290 patients with age-related macular degeneration (AMD), and they discovered that dietary oil fish and seafood intake were significantly lower in AMD patients. Due to the high EPA and DHA levels in fish oil, it was concluded that this kind of nutritional intervention could especially benefit those at high risk for neovascular age-related macular degeneration. (24)

CONDITIONS OF USE AND IMPORTANT INFORMATION: This information is meant to supplement, not replace advice from your doctor or healthcare provider and is not meant to cover all possible uses, precautions, interactions or adverse effects. This information may not fit your specific health circumstances. Never delay or disregard seeking professional medical advice from your doctor or other qualified health care provider because of something you have read on WebMD. You should always speak with your doctor or health care professional before you start, stop, or change any prescribed part of your health care plan or treatment and to determine what course of therapy is right for you.


What's more, ALA is just a precursor to EPA and DHA. You need certain enzymes to elongate and desaturate ALA so it can become long-chained omega-3s. Unfortunately, this does not work in some people, particularly those who are deficient in certain vitamins and minerals, leading to very low conversion rates – only 1 percent of ALA is converted to EPA/DHA. In some, the conversion can even dip as low as 0.1 to 0.5 percent!
For patients without documented CAD, the American Heart Association 2006 Diet and Lifestyle Recommendations advise the consumption of at least 2 servings of fish per week, preferably fatty fish high in DHA and EPA.65 The guidelines also recommend a daily fish intake equivalent to 1 g/d of EPA and DHA for secondary prevention of CAD. Fish oil supplements containing EPA and DHA are suggested as an alternative to fatty fish consumption for secondary prevention.
During pregnancy and breastfeeding, eating 8 to 12 ounces per week of fish and other seafood may improve your baby’s health. However, it is important to choose fish that are higher in EPA and DHA and lower in mercury. Examples are salmon, herring, sardines, and trout. It is not clear whether taking dietary supplements containing EPA and DHA during pregnancy or breastfeeding affects a baby’s health or development. However, some studies show that taking these supplements may slightly increase a baby’s weight at birth and the length of time the baby is in the womb, both of which may be beneficial. Breast milk contains DHA. Most commercial infant formulas also contain DHA.
The absence of DHA in many pure EPA trials, and therefore lack of competition between EPA and DHA during digestion and consequently for uptake, is considered to be partly responsible for the positive outcomes. Simply put, pure EPA delivers more EPA into cells where it is needed than combined EPA & DHA blends. Consequently, oils containing DHA may not be suitable for a variety of conditions when treatment relies on increasing levels of EPA and its end products.
It seems that infancy and childhood are some of the most important periods of time in a person’s life to get plenty omega-3s in their diet, probably because of the amount of long-chain fatty acids found in the brain and retina. It’s crucial for developing babies and children to get a good amount of DHA and EPA so their brains and eyes develop fully and properly. (78)
Marine and freshwater fish oil vary in contents of arachidonic acid, EPA and DHA.[15] The various species range from lean to fatty and their oil content in the tissues has been shown to vary from 0.7% to 15.5%.[16] They also differ in their effects on organ lipids.[15] Studies have revealed that there is no relation between total fish intake or estimated omega−3 fatty acid intake from all fish, and serum omega−3 fatty acid concentrations.[17] Only fatty fish intake, particularly salmonid, and estimated EPA + DHA intake from fatty fish has been observed to be significantly associated with increase in serum EPA + DHA.[17]
Nielsen, G. L., Faarvang, K. L., Thomsen, B. S., Teglbjaerg, K. L., Jensen, L. T., Hansen, T. M., Lervang, H. H., Schmidt, E. B., Dyerberg, J., and Ernst, E. The effects of dietary supplementation with n-3 polyunsaturated fatty acids in patients with rheumatoid arthritis: a randomized, double blind trial. Eur J Clin Invest 1992;22(10):687-691. View abstract.
×