Evidence in the population generally does not support a beneficial role for omega−3 fatty acid supplementation in preventing cardiovascular disease (including myocardial infarction and sudden cardiac death) or stroke.[4][19][20][21] A 2018 meta-analysis found no support that daily intake of one gram of omega-3 fatty acid in individuals with a history of coronary heart disease prevents fatal coronary heart disease, nonfatal myocardial infarction or any other vascular event.[6] However, omega−3 fatty acid supplementation greater than one gram daily for at least a year may be protective against cardiac death, sudden death, and myocardial infarction in people who have a history of cardiovascular disease.[22] No protective effect against the development of stroke or all-cause mortality was seen in this population.[22] Eating a diet high in fish that contain long chain omega−3 fatty acids does appear to decrease the risk of stroke.[23] Fish oil supplementation has not been shown to benefit revascularization or abnormal heart rhythms and has no effect on heart failure hospital admission rates.[24] Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes.[7]


Flaxseed (or linseed) (Linum usitatissimum) and its oil are perhaps the most widely available botanical source of the omega−3 fatty acid ALA. Flaxseed oil consists of approximately 55% ALA, which makes it six times richer than most fish oils in omega−3 fatty acids.[126] A portion of this is converted by the body to EPA and DHA, though the actual converted percentage may differ between men and women.[127]
The omega-3 index may also be helpful for assessing health risks beyond cardiovascular disease. Studies are currently investigating the relationship between omega-3 index levels and mental health issues, like depression (15, 16, 17), cognitive functioning (18, 19), body weight (20), as well as eye health issues, like macular degeneration (21), to name just a few.
Some people who are hypersensitive to fish or have a known allergy to fish products may have a negative reaction to fatty acids which were derived from fish. Some fish oil tablets are also produced with alpha-linolenic acids which come from nuts, which may aggravate those which have an allergy to these products. In many cases these allergies will manifest themselves as a skin rash, but the symptoms could be more severe depending on the severity of your allergies. People with this concern will need to avoid using these products.
Katzman  MA, Bleau  P, Blier  P,  et al; Canadian Anxiety Guidelines Initiative Group on behalf of the Anxiety Disorders Association of Canada/Association Canadienne des troubles anxieux and McGill University.  Canadian clinical practice guidelines for the management of anxiety, posttraumatic stress and obsessive-compulsive disorders.  BMC Psychiatry. 2014;14(suppl 1):S1. doi:10.1186/1471-244X-14-S1-S1PubMedGoogle ScholarCrossref

Sekikawa, A., Curb, D., Ueshima, H., El-Saed, A., Kadowaki, T., Abbott, R. D., ... Kuller, L. H. (2008 August 5). Marine-derived n-3 fatty acids and atherosclerosis in Japanese, Japanese Americans, and Whites: a cross-sectional study. Journal of the American College of Cardiology 52(6), 417–424. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736602/


DHA is one of the most prevalent fatty acids in the brain. This could partly explain why our brains do better with a greater supply. A Rush Institute for Healthy Aging study analyzed fish-eating patterns of more than 800 men and women, ages 65 to 94. Those eating fish at least once a week were much less likely to develop Alzheimer's disease than those who turned up their nose at it.

Omega-3 FA most likely reduce serum triglyceride levels by modulating very-low-density lipoprotein (VLDL) and chylomicron metabolism. There is a consistent finding in the literature that the end effect of fish oil is decreased hepatic secretion of VLDL17—the major endogenous source of triglycerides. This effect occurs most likely through multiple mechanisms, including: (1) decreased synthesis of triglycerides because these omega-3 FA may not be the preferred substrates of the enzyme diacylglycerol O-acyltransferase,18 or they may interact with nuclear transcription factors that control lipogenesis19; cellular metabolism consequently shifts toward a decrease in triglyceride synthesis and an increase in FA oxidation; and (2) the promotion of apolipoprotein B degradation in the liver through the stimulation of an autophagic process.20 This means that fewer VLDL particles can be assembled and secreted. Fish oil may also accelerate VLDL and chylomicron clearance21 by inducing lipoprotein lipase activity.22
DHA is vital for early brain development and maintenance, while EPA seems to be closely related to behavior and mood. Together, both molecules provide critical neuroprotective benefits.11 These neuroprotective effects are important for the prevention of age-related brain shrinkage (cortical atrophy). Aging adults with brain shrinkage often experience memory loss, cognitive decline, and an increase in depression.12-14
Fish oil supplements came under scrutiny in 2006, when the Food Standards Agency in the UK and the Food Safety Authority of Ireland reported PCB levels that exceeded the European maximum limits in several fish oil brands,[60][61] which required temporary withdrawal of these brands. To address the concern over contaminated fish oil supplements, the International Fish Oil Standards (IFOS) Program, a third-party testing and accreditation program for fish oil products, was created by Nutrasource Diagnostics Inc. in Guelph, Ontario, Canada.[62]

Keep in mind that APA found in plant-based foods takes a lot of energy for your body to convert to EPA and DHA. I understand that many people following a vegan diet struggle with the concept of fish oil or eating fish, but animal products contain the necessary omega-3 fatty acids to allow your body to absorb and synthesize what you take in. However, there are plant-based options — you’ll just need more APA because of the way your body processes the medium-chain fatty acid.
It’s uncertain whether omega-3 fatty acid supplements are helpful for depression. Although some studies have had promising results, a 2015 evaluation of 26 studies that included more than 1,400 people concluded that if there is an effect, it may be too small to be meaningful. Other analyses have suggested that if omega-3s do have an effect, EPA may be more beneficial than DHA and that omega-3s may best be used in addition to antidepressant medication rather than in place of it. 
Results  In total, 1203 participants with omega-3 PUFA treatment (mean age, 43.7 years; mean female proportion, 55.0%; mean omega-3 PUFA dosage, 1605.7 mg/d) and 1037 participants without omega-3 PUFA treatment (mean age, 40.6 years; mean female proportion, 55.0%) showed an association between clinical anxiety symptoms among participants with omega-3 PUFA treatment compared with control arms (Hedges g, 0.374; 95% CI, 0.081-0.666; P = .01). Subgroup analysis showed that the association of treatment with reduced anxiety symptoms was significantly greater in subgroups with specific clinical diagnoses than in subgroups without clinical conditions. The anxiolytic effect of omega-3 PUFAs was significantly better than that of controls only in subgroups with a higher dosage (at least 2000 mg/d) and not in subgroups with a lower dosage (<2000 mg/d).
Findings  In this systematic review and meta-analysis of 19 clinical trials including 2240 participants from 11 countries, improvement in anxiety symptoms was associated with omega-3 polyunsaturated fatty acid treatment compared with controls in both placebo-controlled and non–placebo-controlled trials. The anxiolytic effects of omega-3 polyunsaturated fatty acids were also stronger in participants with clinical conditions than in subclinical populations.

Because of the preliminary state of knowledge on the effects of omega-3 PUFA treatment on anxiety, we decided to include as many studies as possible and not to set further limitations on specific characteristics, such as length of study, diagnosis, omega-3 PUFA dosage, omega-3 PUFA preparation (EPA to DHA ratio), rated anxiety coding scale, or type of control. Therefore, we chose to make the inclusion criteria as broad as possible to avoid missing any potentially eligible studies. The inclusion criteria included clinical trials in humans (randomized or nonrandomized), studies investigating the effects of omega-3 PUFA treatment on anxiety symptoms, and formal published articles in peer-reviewed journals. The clinical trials could be placebo controlled or non–placebo controlled. The target participants could include healthy volunteers, patients with psychiatric illness, and patients with physical illnesses other than psychiatric illnesses. The exclusion criteria included case reports or series, animal studies or review articles, and studies not investigating the effects of omega-3 PUFA treatment on anxiety symptoms. We did not set any language limitation to increase the number of eligible articles. Figure 1 shows the literature search and screening protocol.
There is some evidence that omega−3 fatty acids are related to mental health,[47] including that they may tentatively be useful as an add-on for the treatment of depression associated with bipolar disorder.[48] Significant benefits due to EPA supplementation were only seen, however, when treating depressive symptoms and not manic symptoms suggesting a link between omega−3 and depressive mood.[48] There is also preliminary evidence that EPA supplementation is helpful in cases of depression.[49] The link between omega−3 and depression has been attributed to the fact that many of the products of the omega−3 synthesis pathway play key roles in regulating inflammation (such as prostaglandin E3) which have been linked to depression.[50] This link to inflammation regulation has been supported in both in vitro[51] and in vivo studies as well as in meta-analysis studies.[33] The exact mechanism in which omega−3 acts upon the inflammatory system is still controversial as it was commonly believed to have anti-inflammatory effects.[52]
Marine and freshwater fish oil vary in contents of arachidonic acid, EPA and DHA.[15] The various species range from lean to fatty and their oil content in the tissues has been shown to vary from 0.7% to 15.5%.[16] They also differ in their effects on organ lipids.[15] Studies have revealed that there is no relation between total fish intake or estimated omega−3 fatty acid intake from all fish, and serum omega−3 fatty acid concentrations.[17] Only fatty fish intake, particularly salmonid, and estimated EPA + DHA intake from fatty fish has been observed to be significantly associated with increase in serum EPA + DHA.[17]
Our scientists also focused on each oil’s freshness, measured by the degree of oxidation. Oxidation occurs in two phases: primary (measured by peroxide values) and secondary (measured by p-anisidine values). Total oxidation is formalized into a quantitative score, TOTOX. While Labdoor conducted tests of both primary and secondary oxidation, advances in rancidity testing confirm that added flavors–particularly added citrus flavors prevalent in liquid formulations–skew p-anisidine values and result in false positive outcomes. Until analytical techniques measuring p-anisidine values that are able to account for added flavors are established, Labdoor will use peroxide values as the primary indicator of freshness. All products recorded measurable levels of oxidation, with the average product recording a peroxide values of 3.7 meq/kg. 14/51 products recorded peroxide levels at or above the upper limit (10 meq/kg).
Here is a brief on omega-3 fatty acids: There are three types of omega-3 fatty acids, namely alpha-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). All three are important for the body. Vegetable sources, including flaxseed oil, soybean oil, hemp oil, canola oil, walnut oil, rapeseed, perilla, chia, and tofu are rich in ALA. The human body has the ability to convert ALA to DHA and EPA, though there are certain limitations to this conversion.
There was no significant association between the Hedges g and mean age (k, 17; P = .51), female proportion (k, 18; P = .32), mean omega-3 PUFA dosage (k, 19; P = .307), EPA to DHA ratio (k, 17; P = .86), dropout rate in the omega-3 PUFA group (k, 18; P = .71), duration of omega-3 PUFA treatment (k, 19; P = .14), Jadad score of randomization (k, 19; P = .10), Jadad score of blindness (k, 19; P = .57), or total Jadad score (k, 19; P = .18).
As a result, we depend on our diet to get the necessary Omega-3 fatty acids into our bodies. These two fatty acids work together in human health. DHA helps with cell membrane structure and assists in normal growth and development. While both EPA and DHA participate in key pathways of the immune system where they control key processes that support our health. Together they provide a number of important health benefits throughout our lifetime.

You “beat me to the punch.” despite labels, cured meats , aged fats, as well as those heated to a high enough temperature all have trans bonds. Fish that offer high amounts of Omega-3 also often are high in mercury. I was fortunate to have a very good teacher for experimental design. One should be careful to assume that a study actually measures what it claims to and without “confounders” Confounders are parts of the study that complicate the the “logic” of the design. Also, were other fat contents measured or controlled? It would be reasonable to suspect that those with higher levels of Omega-3 could have higher levels of Omega-6, fats in general , High levels of protein, higher levels of testosterone, or lower levels of certain hormones. In addition, statistical studies do not and have never indicated a causal relationship. I have a fear of how much we have begun to rely on statistical correlational studies which are at the end of the day”soft” science.
Human growth and intellectual development – DHA plays a very important role during fetal development, early infancy and old age. High concentrations of DHA are found in the brain and increase 300 to 500 percent in an infant’s brain during the last trimester of pregnancy. Adding DHA to a pregnant mother’s diet may be beneficial for the fetus’s brain development. Elderly people should also take EPA DHA, because as we get older, our bodies form less EPA and DHA, which may cause less mental focus and cognitive function. Taking EPA DHA also may help with mental abnormalities, such as Alzheimer’s disease and dementia.

Hernandez, D., Guerra, R., Milena, A., Torres, A., Garcia, S., Garcia, C., Abreu, P., Gonzalez, A., Gomez, M. A., Rufino, M., Gonzalez-Posada, J., Lorenzo, V., and Salido, E. Dietary fish oil does not influence acute rejection rate and graft survival after renal transplantation: a randomized placebo-controlled study. Nephrol.Dial.Transplant. 2002;17(5):897-904. View abstract.

The randomized trials assessing the efficacy of fish oil supplementation on secondary prevention of CAD lend further evidence to the findings that fish oil may protect from sudden cardiac death.36 The Diet and Reinfarction Trial (DART),37 one of the first randomized trials of fish oil in CAD, has been interpreted as potential support for fish oil’s role in sudden death reduction because the primary outcome of all-cause mortality occurred within 2 months of the trial’s onset.38 After such a short time span, it was believed that atherosclerosis would not be altered and therefore another mechanism was reducing mortality. This was further supported by the fact that nonfatal MIs were not reduced. Although the actual modes of death other than CAD-related deaths were not documented, it has been postulated to be secondary to a reduction in sudden death.39 The Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico-Prevenzione40 (GISSI-Prevenzione) trial, a larger randomized trial of fish oil in CAD, has also been interpreted as evidence for fish oil’s protection against sudden death. Sudden death, however, was not a primary end point. Rather, the reduction in fatal events was driven by a reduction in cardiovascular death, which included coronary death, cardiac death, and sudden death.
Macchia, A., Levantesi, G., Franzosi, M. G., Geraci, E., Maggioni, A. P., Marfisi, R., Nicolosi, G. L., Schweiger, C., Tavazzi, L., Tognoni, G., Valagussa, F., and Marchioli, R. Left ventricular systolic dysfunction, total mortality, and sudden death in patients with myocardial infarction treated with n-3 polyunsaturated fatty acids. Eur.J.Heart Fail. 2005;7(5):904-909. View abstract.
These conversions occur competitively with omega−6 fatty acids, which are essential closely related chemical analogues that are derived from linoleic acid. They both utilize the same desaturase and elongase proteins in order to synthesize inflammatory regulatory proteins.[50] The products of both pathways are vital for growth making a balanced diet of omega−3 and omega−6 important to an individual's health.[77] A balanced intake ratio of 1:1 was believed to be ideal in order for proteins to be able to synthesize both pathways sufficiently, but this has been controversial as of recent research.[78]
Wohl, D. A., Tien, H. C., Busby, M., Cunningham, C., Macintosh, B., Napravnik, S., Danan, E., Donovan, K., Hossenipour, M., and Simpson, R. J., Jr. Randomized study of the safety and efficacy of fish oil (omega-3 fatty acid) supplementation with dietary and exercise counseling for the treatment of antiretroviral therapy-associated hypertriglyceridemia. Clin.Infect.Dis. 11-15-2005;41(10):1498-1504. View abstract.
Omega-3s have been studied in various mood disorders, such as postpartum depression, with some promising results. In bipolar disorder (manic depression), the omega-3s may be most effective for the depressed phase rather than the manic phase of the illness. The omega-3s have also been proposed to alleviate or prevent other psychiatric conditions including schizophrenia, borderline personality disorder, obsessive compulsive disorder, and attention deficit disorder. However, there is still not enough evidence to recommend the omega-3s in these conditions.
The American Heart Association (AHA) has made recommendations for EPA and DHA due to their cardiovascular benefits: individuals with no history of coronary heart disease or myocardial infarction should consume oily fish two times per week; and "Treatment is reasonable" for those having been diagnosed with coronary heart disease. For the latter the AHA does not recommend a specific amount of EPA + DHA, although it notes that most trials were at or close to 1000 mg/day. The benefit appears to be on the order of a 9% decrease in relative risk.[106] The European Food Safety Authority (EFSA) approved a claim "EPA and DHA contributes to the normal function of the heart" for products that contain at least 250 mg EPA + DHA. The report did not address the issue of people with pre-existing heart disease. The World Health Organization recommends regular fish consumption (1-2 servings per week, equivalent to 200 to 500 mg/day EPA + DHA) as protective against coronary heart disease and ischaemic stroke.
As a result, we depend on our diet to get the necessary Omega-3 fatty acids into our bodies. These two fatty acids work together in human health. DHA helps with cell membrane structure and assists in normal growth and development. While both EPA and DHA participate in key pathways of the immune system where they control key processes that support our health. Together they provide a number of important health benefits throughout our lifetime.
There are numerous omega-3 sources with varying proportions of EPA and DHA, and the balance of EPA and DHA in a supplement influences the actions of these fats in the body. For more information about the different types of omega-3 sources and which are most suited for your individual needs, read our page on the different types of omega-3 supplements

A 2008 meta-study by the Canadian Medical Association Journal found fish oil supplementation did not demonstrate any preventative benefit to cardiac patients with ventricular arrhythmias.[36] A 2012 meta-analysis published in the Journal of the American Medical Association, covering 20 studies and 68,680 patients, found that Omega-3 Fatty Acid supplementation did not reduce the chance of death, cardiac death, heart attack or stroke.[37]

Bergmann, R. L., Haschke-Becher, E., Klassen-Wigger, P., Bergmann, K. E., Richter, R., Dudenhausen, J. W., Grathwohl, D., and Haschke, F. Supplementation with 200 mg/day docosahexaenoic acid from mid-pregnancy through lactation improves the docosahexaenoic acid status of mothers with a habitually low fish intake and of their infants. Ann Nutr Metab 2008;52(2):157-166. View abstract.
Fish oil seems to be a subject of controversy. Some people swear by it, and there are thousands of clinical trials out now trying to study what the latest and greatest thing about the supplement is. The Natural Standard does a really good job collecting and gathering data for those who are interested in delving through what fish oil may or may not be doing to us. Definitive answers, however, may take a little while to get.
In later life, cognitive function and brain deterioration may become a concern. Once again, maintaining high levels of EPA has been shown to lower the risk of developing and worsening cognitive decline and dementia. If, however, you know someone who already has a diagnosis of dementia or Alzheimer’s, their brain has already been damaged and needs structural support. At this point, DHA becomes important again and taking a high-EPA product that contains 250mg of DHA also is important to prevent further loss of brain tissue.

Omega-3 [(n-3)] fatty acids have been linked to healthy aging throughout life. Recently, fish-derived omega-3 fatty acids EPA and DHA have been associated with fetal development, cardiovascular function, and Alzheimer's disease. However, because our bodies do not efficiently produce some omega-3 fatty acids from marine sources, it is necessary to obtain adequate amounts through fish and fish-oil products. Studies have shown that EPA and DHA are important for proper fetal development, including neuronal, retinal, and immune function. EPA and DHA may affect many aspects of cardiovascular function including inflammation, peripheral artery disease, major coronary events, and anticoagulation. EPA and DHA have been linked to promising results in prevention, weight management, and cognitive function in those with very mild Alzheimer's disease.


Aceite de Pescado, Acides Gras Oméga-3, Acides Gras Oméga 3, Acides Gras Oméga 3 Sous Forme Ester Éthylique, Acides Gras N-3, Acides Gras Polyinsaturés N-3, Acides Gras W3, ACPI, EPA/DHA Ethyl Ester, Ester Éthylique de l'AEP/ADH, Fish Body Oil, Herring Oil, Huile de Foie de Morue, Huile de Hareng, Huile de Menhaden, Huile de Poisson, Huile de Saumon, Huile de Thon, Huile Lipidique Marine, Huile Marine, Huiles Marines, Lipides Marins, Marine Lipid Concentrate, Marine Fish Oil, Marine Lipid Oil, Marine Lipids, Marine Oil, Marine Oils, Marine Triglyceride, Menhaden Oil, N-3 Fatty Acids, N3-polyunsaturated Fatty Acids, Omega 3, Oméga 3, Omega-3, Oméga-3, Omega-3 Fatty Acid Ethyl Ester, Omega-3 Fatty Acids, Omega 3 Fatty Acids, Omega-3 Marine Triglycerides, PUFA, Salmon Oil, Triglycérides Marins, Tuna Fish Oil, Tuna Oil, W-3 Fatty Acids.

×