Meta‐analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all‐cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high‐quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high‐quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses – LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.
Various scales were used in these studies to evaluate the target outcome of anxiety symptoms: the Yale-Brown Obsessive-Compulsive Scale, Profile of Mood States, State-Trait Anxiety Inventory, Hamilton Anxiety Rating Scale, Generalized Anxiety Disorder questionnaire, Depression, Anxiety, and Stress Scales, Clinician-Administered Posttraumatic Stress Disorder Scale, Beck Anxiety Inventory, visual analog scale of anxiety, Impact of Event Scale–Revised, Conners score anxiety subscale, Neuropsychiatric Inventory, test anxiety severity, Hospital Anxiety and Depression Scale anxiety subscale, and Child Behavior Checklist anxiety subscale. The psychiatric and physical health conditions of the recruited participants also varied widely: general population without specific clinical conditions,36,47,51,55,60 participants with acute myocardial infarction,35 borderline personality disorder,2 mild to severe depression,59 obsessive-compulsive disorder,33 severe accidental injury,49 participants who were traumatized by disaster,54 participants with substance abuse disorder,34 women with premenstrual syndrome,56 children with attention-deficit/hyperactivity disorder,48,53 Alzheimer disease,58 generally healthy undergraduate college students but with test anxiety,61 Parkinson disease,52 and participants with Tourette syndrome.57 Sixteen studies compared the effect of omega-3 PUFA treatment with that of the placebo33,34,36,47-49,51-53,55-61; the other 3 studies were non–placebo controlled trials.35,50,54 The mean (SD) Jadad score of the recruited studies was 3.8 (1.0) (eTable in the Supplement).
The most widely available dietary source of EPA and DHA is cold-water oily fish, such as salmon, herring, mackerel, anchovies, and sardines. Oils from these fish have a profile of around seven times as much omega-3 oils as omega-6 oils. Other oily fish, such as tuna, also contain omega-3 in somewhat lesser amounts. Although fish is a dietary source of omega-3 oils, fish do not synthesize them; they obtain them from the algae (microalgae in particular) or plankton in their diets.[22]
The biggest cause of omega-3 deficiency is the overconsumption of foods high in omega-6 fatty acids. Omega-6 comes from things like fried foods, fast foods and boxed foods that contain vegetables oils like soybean oil, canola oil, sunflower oil, cottonseed oil and corn oil. When you consume too much omega-6, it can decrease your body’s ability to metabolize healthy omega-3 fatty acids. (36)
These conversions occur competitively with omega−6 fatty acids, which are essential closely related chemical analogues that are derived from linoleic acid. They both utilize the same desaturase and elongase proteins in order to synthesize inflammatory regulatory proteins.[50] The products of both pathways are vital for growth making a balanced diet of omega−3 and omega−6 important to an individual's health.[77] A balanced intake ratio of 1:1 was believed to be ideal in order for proteins to be able to synthesize both pathways sufficiently, but this has been controversial as of recent research.[78]

Nine studies with 10 data sets used omega-3 PUFA dosages of less than 2000 mg/d.35,47,48,51,53,55,56,60,61 The main results revealed that there was no significant difference in the association of treatment with reduced anxiety symptoms between patients receiving omega-3 PUFA treatment and those not receiving it (k, 9; Hedges g, 0.457; 95% CI, –0.077 to 0.991; P = .09) (Figure 3B). Ten studies with 10 data sets used omega-3 PUFA dosages of at least 2000 mg/d.33,34,36,49,50,52,54,55,57-59 The main results revealed a significantly greater association of treatment with reduced anxiety symptoms in patients receiving omega-3 PUFA treatment than in those not receiving it (k, 11; Hedges g, 0.213; 95% CI, 0.031-0.395; P = .02) (Figure 3B). Furthermore, there was no significantly different estimated effect sizes between these 2 subgroups by the interaction test (P = .40).

In a 2009 letter on a pending revision to the Dietary Guidelines for Americans, the American Heart Association recommended 250–500 mg/day of EPA and DHA.[26] The Guidelines were revised again for 2015-2020; included is a recommendation that adults consume at least eight ounces of a variety of types of fish per week, equating to at least 250 mg/day of EPA + DHA.[citation needed] The Food and Drug Administration recommends not exceeding 3 grams per day of EPA + DHA from all sources, with no more than 2 grams per day from dietary supplements.[27]

Omega 3 is a type of fat. Small amounts of omega 3 fats are essential for good health, and they can be found in the food that we eat. The main types of omega 3 fatty acids are; alpha­linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA).  ALA is normally found in fats from plant foods, such as nuts and seeds (walnuts and rapeseed are rich sources). EPA and DHA, collectively called long chain omega 3 fats, are naturally found in fatty fish, such as salmon and fish oils including cod liver oil.

Pro Omega 3 Intensive Formula is a more convenient source of EPA and DHA than regular marine fish oils for those who would like to supplement their diets with higher amounts of these important omega 3 fatty acids. Our formula contains concentrated marine fish oil, providing enriched levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Plus, it’s lower in saturated fatty acids than regular marine fish oil. For those who don’t eat fish or want to add more omega to their diet, Omega 3 supplements are a convenient way of incorporating these important nutrients into your everyday life. This fish oil supplement is strictly screened for the absence of any toxic metals and chemicals, and is completely free of cholesterol. The oil is carefully processed and handled to avoid oxidation.†

Norris, J. M., Yin, X., Lamb, M. M., Barriga, K., Seifert, J., Hoffman, M., Orton, H. D., Baron, A. E., Clare-Salzler, M., Chase, H. P., Szabo, N. J., Erlich, H., Eisenbarth, G. S., and Rewers, M. Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. JAMA 9-26-2007;298(12):1420-1428. View abstract.
Studies have also found that omega-3 fatty acids from fish oil are associated with improved survival rates for heart attack victims. A study published in the medical journal Circulation found that people who took a high dose of fish oil each for six months following the occurrence of a heart attack actually improved their hearts’ overall functioning and also reduced biomarkers of systemic inflammation. (20)
While fish for dinner is one way to get EPA and DHA, most people don’t eat the suggested two to three servings of oily fish per week to reap the benefits of omega-3s. What’s more, there are extremely few food sources, aside from fish, that naturally provide EPA and DHA. With all the benefits that can come from fish oil, it’s no surprise that these supplements are increasing in popularity.
A study in 2013, (Stafford, Jackson, Mayo-Wilson, Morrison, Kendall), stated the following in its conclusion: "Although evidence of benefits for any specific intervention is not conclusive, these findings suggest that it might be possible to delay or prevent transition to psychosis. Further research should be undertaken to establish conclusively the potential for benefit of psychological interventions in the treatment of people at high risk of psychosis."`[56]
Secondary prevention fish oil studies demonstrate a significant reduction in MI. But unfortunately, both the observational and randomized trials were conducted in an era before the widespread use of HMG-CoA reductase inhibitors, and therefore, the incremental benefit is still unknown. Nevertheless, in patients receiving antiplatelet and anticoagulant therapy in addition to fish oil supplementation (even at doses as high as 4 g per day), no serious adverse complications have been reported.
It can be challenging to get the appropriate intake of EPA and DHA through diet alone, even though EPA and DHA are produced by water plants such as algae and are prevalent in marine animals. A shorter chain omega-3 fatty acid, α-linolenic acid (ALA),6 is a prominent component of our diet as it is found in many land plants that are commonly eaten, but it does not provide the health benefits seen with EPA and DHA. Although it is possible for the body to convert ALA to EPA and DHA by enlongase and desaturase enzymes, research suggests that only a small amount can be synthesized in the body from this process (8). For example, 1 study suggested that only ∼2 to 10% of ALA is converted to EPA or DHA (9), and other studies found even less: Goyens et al. (10) found an ALA conversion of ∼7% for EPA, but only 0.013% for DHA; Hussein et al. (11) found an ALA conversion of only 0.3% for EPA and <0.01% for DHA.
Tanaka, K., Ishikawa, Y., Yokoyama, M., Origasa, H., Matsuzaki, M., Saito, Y., Matsuzawa, Y., Sasaki, J., Oikawa, S., Hishida, H., Itakura, H., Kita, T., Kitabatake, A., Nakaya, N., Sakata, T., Shimada, K., and Shirato, K. Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: subanalysis of the JELIS trial. Stroke 2008;39(7):2052-2058. View abstract.
Rogers, P. J., Appleton, K. M., Kessler, D., Peters, T. J., Gunnell, D., Hayward, R. C., Heatherley, S. V., Christian, L. M., McNaughton, S. A., and Ness, A. R. No effect of n-3 long-chain polyunsaturated fatty acid (EPA and DHA) supplementation on depressed mood and cognitive function: a randomised controlled trial. Br J Nutr 2008;99(2):421-431. View abstract.
Flaxseed (or linseed) (Linum usitatissimum) and its oil are perhaps the most widely available botanical source of the omega−3 fatty acid ALA. Flaxseed oil consists of approximately 55% ALA, which makes it six times richer than most fish oils in omega−3 fatty acids.[126] A portion of this is converted by the body to EPA and DHA, though the actual converted percentage may differ between men and women.[127]

High triglycerides. Most research shows that fish oil from supplements and food sources can reduce triglyceride levels. The effects of fish oil appear to be the greatest in people who have very high triglyceride levels. Also the amount of fish oil consumed seems to directly affect how much triglyceride levels are reduced. Some fish oil supplements including Lovaza, Omtryg, and Epanova have been approved by the FDA to lower triglycerides.