Because of the preliminary state of knowledge on the effects of omega-3 PUFA treatment on anxiety, we decided to include as many studies as possible and not to set further limitations on specific characteristics, such as length of study, diagnosis, omega-3 PUFA dosage, omega-3 PUFA preparation (EPA to DHA ratio), rated anxiety coding scale, or type of control. Therefore, we chose to make the inclusion criteria as broad as possible to avoid missing any potentially eligible studies. The inclusion criteria included clinical trials in humans (randomized or nonrandomized), studies investigating the effects of omega-3 PUFA treatment on anxiety symptoms, and formal published articles in peer-reviewed journals. The clinical trials could be placebo controlled or non–placebo controlled. The target participants could include healthy volunteers, patients with psychiatric illness, and patients with physical illnesses other than psychiatric illnesses. The exclusion criteria included case reports or series, animal studies or review articles, and studies not investigating the effects of omega-3 PUFA treatment on anxiety symptoms. We did not set any language limitation to increase the number of eligible articles. Figure 1 shows the literature search and screening protocol.
Because patients with depression experience rapid shrinking of their hippocampus, many strategies for relieving depression focus on increasing new brain cell growth in that specific area of the brain.23 There’s now evidence that increasing omega-3 intake, especially DHA, may be an effective way of treating or preventing depression, partly by protecting the hippocampus from further shrinkage.23

Fatty predatory fish like sharks, swordfish, tilefish, and albacore tuna may be high in omega-3 fatty acids, but due to their position at the top of the food chain, these species may also accumulate toxic substances through biomagnification. For this reason, the United States Environmental Protection Agency recommends limiting consumption (especially for women of childbearing age) of certain (predatory) fish species (e.g. albacore tuna, shark, king mackerel, tilefish and swordfish) due to high levels of the toxic contaminant mercury. Dioxin, PCBs and chlordane are also present.[13] Fish oil is used as a component in aquaculture feed. More than 50 percent of the world's fish oil used in aquaculture feed is fed to farmed salmon.[14]
Several studies confirmed the benefit of omega-3 supplementation during pregnancy in terms of proper development of the brain and retina. Of the 2 most important long-chain omega-3 fatty acids, EPA and DHA, DHA is the more important for proper cell membrane function and is vital to the development of the fetal brain and retina (17). During the third trimester, vast amounts of DHA accumulate in fetal tissue (20). The 2 most infiltrated fetal areas include the retina and brain, which may correlate with normal eyesight and brain function (19). A study by Judge et al. (20) found that children whose mothers had taken DHA supplementation during pregnancy (n = 29) had significantly better problem-solving skills at 9 mo old (P = 0.017) than those whose mothers had not taken DHA supplementation during pregnancy (n = 15). Another study provided a cognitive assessment of children 2.5 y after maternal EPA+DHA supplementation during pregnancy from 20 wk of gestation until delivery (n = 33) compared with children in a placebo group (n = 39). Children in the EPA + DHA–supplemented group attained significantly higher scores for eye and hand coordination [mean score, 114 (SD 10.2] than those in the placebo group [mean score, 108 (SD 11.3)] (P = 0.021, adjusted P = 0.008) (19).

Jump up ^ Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, Goldberg AC, Howard WJ, Jacobson MS, Kris-Etherton PM, Lennie TA, Levi M, Mazzone T, Pennathur S (May 2011). "Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association". Circulation. 123 (20): 2292–333. doi:10.1161/CIR.0b013e3182160726. PMID 21502576.
Brain function and vision rely on dietary intake of DHA to support a broad range of cell membrane properties, particularly in grey matter, which is rich in membranes.[61][62] A major structural component of the mammalian brain, DHA is the most abundant omega−3 fatty acid in the brain.[63] It is under study as a candidate essential nutrient with roles in neurodevelopment, cognition, and neurodegenerative disorders.[61]
Tanaka, K., Ishikawa, Y., Yokoyama, M., Origasa, H., Matsuzaki, M., Saito, Y., Matsuzawa, Y., Sasaki, J., Oikawa, S., Hishida, H., Itakura, H., Kita, T., Kitabatake, A., Nakaya, N., Sakata, T., Shimada, K., and Shirato, K. Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: subanalysis of the JELIS trial. Stroke 2008;39(7):2052-2058. View abstract.

Maximizing the benefits you get from omega-3s is highly dependent on how they are absorbed and transported throughout your body. Although these fatty acids are water soluble, they cannot be easily transported into your blood in their free form. Therefore, they need to be packaged in lipoprotein vehicles for them to be better absorbed into your bloodstream.
We use cookies and similar technologies to improve your browsing experience, personalize content and offers, show targeted ads, analyze traffic, and better understand you. We may share your information with third-party partners for marketing purposes. To learn more and make choices about data use, visit our Advertising Policy and Privacy Policy. By clicking “Accept and Continue” below, (1) you consent to these activities unless and until you withdraw your consent using our rights request form, and (2) you consent to allow your data to be transferred, processed, and stored in the United States.

Full citation: Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega 3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews 2018, Issue 7. Art. No.: CD003177. DOI: 10.1002/14651858.CD003177.pub3.
In my opinion, the key benefit of DHA lies in its unique spatial characteristics. As mentioned earlier, the extra double bond (six in DHA vs. five in EPA) and increased carbon length (22 carbons in DHA vs. 20 in EPA) means that DHA takes up takes up a lot more space than does EPA in the membrane. Although this increase in spatial volume makes DHA a poor substrate for phospholipase A2 as well as the COX and LOX enzymes, it does a great job of making membranes (especially those in the brain) a lot more fluid as the DHA sweeps out a much greater volume in the membrane than does EPA. This increase in membrane fluidity is critical for synaptic vesicles and the retina of the eye as it allows receptors to rotate more effectively thus increasing the transmission of signals from the surface of the membrane to the interior of the nerve cells. This is why DHA is a critical component of these highly fluid portions of the nerves (7). On the other hand, the myelin membrane is essentially an insulator so that relatively little DHA is found in that part of the membrane.
Heart disease. Eating fish can be effective for keeping people with healthy hearts free of heart disease. People who already have heart disease might also be able to lower their risk of dying from heart disease by eating fish. The picture is less clear for fish oil supplements. For people who already take heart medications such as a "statin" and those who already eat a decent amount of fish, adding on fish oil might not offer any additional benefit.
×