Many studies show that eating fatty fish and other types of seafood as part of a healthy eating pattern helps keep your heart healthy and helps protect you from many heart problems. Getting more EPA or DHA from foods lowers triglyceride levels, for example. Omega-3 dietary supplements can also help lower triglyceride levels, but it is not clear whether omega-3 supplements protect you from most heart problems.
Fish oil has only a small benefit on the risk of premature birth.[43][44] A 2015 meta-analysis of the effect of omega−3 supplementation during pregnancy did not demonstrate a decrease in the rate of preterm birth or improve outcomes in women with singleton pregnancies with no prior preterm births.[45] A systematic review and meta-analysis published the same year reached the opposite conclusion, specifically, that omega−3 fatty acids were effective in "preventing early and any preterm delivery".[46]
The most extensive data of the effect of fish oil on lipoprotein subfractions are based on trials performed before the widespread use of statins. This data were aggregated over a decade ago in a meta-analysis of 16 randomized trials including over 1500 patients.17 In this analysis, low-density lipoprotein (LDL) was increased by an average of 5% and high-density lipoprotein was marginally changed. Although a shift toward less atherogenic, larger and more buoyant LDL particle composition has been shown,74 this has been offset by the observation that the number of apolipoprotein B 100 particles increases and may be more susceptible to oxidation.75 Increased conversion of remnant particles (intermediate density lipoprotein) to LDL has also been observed.76
Fish oil seems to be a subject of controversy. Some people swear by it, and there are thousands of clinical trials out now trying to study what the latest and greatest thing about the supplement is. The Natural Standard does a really good job collecting and gathering data for those who are interested in delving through what fish oil may or may not be doing to us. Definitive answers, however, may take a little while to get.
De Truchis, P., Kirstetter, M., Perier, A., Meunier, C., Zucman, D., Force, G., Doll, J., Katlama, C., Rozenbaum, W., Masson, H., Gardette, J., and Melchior, J. C. Reduction in triglyceride level with N-3 polyunsaturated fatty acids in HIV-infected patients taking potent antiretroviral therapy: a randomized prospective study. J.Acquir.Immune.Defic.Syndr. 3-1-2007;44(3):278-285. View abstract.

Since 2004, scientists have been suggesting that the omega-3 index be used as a way to measure a person’s risk of cardiovascular disease, in a similar way to how cholesterol levels are used today (1). A recent study funded by the National Institutes for Health even indicated that the omega-3 index could be a better predictor of death risk than serum cholesterol levels (2).


My initial interest in omga-3 was an article by Dr Andrew Stoll in Harvard about May 99, One of my bipolar patients had extreme OCD related to HIV which was not relevant to her. I put her on 9.6g of fish oil and continued her on her regular medication. She was well for the next 3 years with no obvious mental health problem when she was attending here.
The three types of omega-3s are APA, EPA and DHA. The first is a medium-chain fatty acid and must be converted into EPA before being synthesized by the body, and only about 1 percent of the APA consumed is able to be converted. EPA and DHA are already in a form ready to be synthesized (and are the subject of most scientific research regarding omega-3s).
Although results from studies regarding the disease processes of AD seem to be promising, there are conflicting data regarding the use of omega-3 fatty acids in terms of cognitive function. Neuropsychiatric symptoms accompany AD from early stages and tend to increase with the progression of the disease (55). An analysis of 174 patients randomized to a placebo group or to a group with mild to moderate AD (MMSE score ≥15) treated with daily DHA (1.7 g) and EPA (0.6 g) found that at 6 mo, the decline in cognitive function did not differ between the groups. Yet, in a subgroup with very mild cognitive dysfunction (n = 32, MMSE score >27), they observed a significant reduction in the MMSE decline rate in the DHA+EPA-supplemented group compared with the placebo group (47). Another study that looked at DHA supplementation in individuals with mild to moderate AD used the Alzheimer's Disease Assessment Scale–Cognitive subscale, which evaluates cognitive function on a 70-point scale in terms of memory, attention, language, orientation, and praxis. This study found that DHA supplementation had no beneficial effect on cognition during the 18-mo trial period for the DHA group vs. placebo (56).
Secondly, when we consume EPA, it inhibits the production of AA from DGLA and also competes with AA for uptake into cell membranes and can therefore lower the amount of AA in membranes by literally saturating the cell – in essence, it takes up more of the available ‘space’ and displaces AA. When there is less AA present, there is a reduced capacity for it to produce inflammatory products.
Muñoz MA, Liu W, Delaney JA, Brown E, Mugavero MJ, Mathews WC, Napravnik S, Willig JH, Eron JJ, Hunt PW, Kahn JO, Saag MS, Kitahata MM, Crane HM. Comparative effectiveness of fish oil versus fenofibrate, gemfibrozil, and atorvastatin on lowering triglyceride levels among HIV-infected patients in routine clinical care. J Acquir Immune Defic Syndr 2013;64(3):254-60. View abstract.
Because patients with depression experience rapid shrinking of their hippocampus, many strategies for relieving depression focus on increasing new brain cell growth in that specific area of the brain.23 There’s now evidence that increasing omega-3 intake, especially DHA, may be an effective way of treating or preventing depression, partly by protecting the hippocampus from further shrinkage.23

Disclaimer: The entire contents of this website are based upon the opinions of Dr. Mercola, unless otherwise noted. Individual articles are based upon the opinions of the respective author, who retains copyright as marked. The information on this website is not intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice. It is intended as a sharing of knowledge and information from the research and experience of Dr. Mercola and his community. Dr. Mercola encourages you to make your own health care decisions based upon your research and in partnership with a qualified health care professional. If you are pregnant, nursing, taking medication, or have a medical condition, consult your health care professional before using products based on this content.


Both omega−6 and omega−3 fatty acids are essential: humans must consume them in their diet. Omega−6 and omega−3 eighteen-carbon polyunsaturated fatty acids compete for the same metabolic enzymes, thus the omega−6:omega−3 ratio of ingested fatty acids has significant influence on the ratio and rate of production of eicosanoids, a group of hormones intimately involved in the body's inflammatory and homeostatic processes, which include the prostaglandins, leukotrienes, and thromboxanes, among others. Altering this ratio can change the body's metabolic and inflammatory state.[16] In general, grass-fed animals accumulate more omega−3 than do grain-fed animals, which accumulate relatively more omega−6.[86] Metabolites of omega−6 are more inflammatory (esp. arachidonic acid) than those of omega−3. This necessitates that omega−6 and omega−3 be consumed in a balanced proportion; healthy ratios of omega−6:omega−3, according to some authors, range from 1:1 to 1:4.[87] Other authors believe that a ratio of 4:1 (4 times as much omega−6 as omega−3) is already healthy.[88][89] Studies suggest the evolutionary human diet, rich in game animals, seafood, and other sources of omega−3, may have provided such a ratio.[90][91]

In fact, fish oil is even dipping its way into mainstream medicine. In September 2018, Amarin Corporation, the biopharmaceutical developer of pharmaceutical-grade fish oil Vascepa, released preliminary findings of its double-blind clinical trial. In the study, researchers tracked more than 8,000 adults for a median 4.9 years. The mix of study participants had either established cardiovascular disease or type 2 diabetes and another cardiovascular disease risk factor, along with persistently elevated triglycerides.
Hooper, L., Thompson, R. L., Harrison, R. A., Summerbell, C. D., Ness, A. R., Moore, H. J., Worthington, H. V., Durrington, P. N., Higgins, J. P., Capps, N. E., Riemersma, R. A., Ebrahim, S. B., and Davey, Smith G. Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. BMJ 4-1-2006;332(7544):752-760. View abstract.
In a U.K. study, children of mothers who ate more than 12 ounces a week actually scored better on tests of verbal I.Q., social behavior, and development and communication than children of mothers who ate none. In the Seychelles Islands, where people average 12 fish meals -- not ounces -- a week, there are no reports of links between mercury exposure and poor outcomes in children. These studies suggest that eating less than 12 ounces of fish each week could do more harm to a child's developing neurological system than mercury poisoning.
A six week, double-blind study on fish oil supplementation for body composition showed that the group taking 4 grams/day of fish oil (contained 1600mg if EPA & 800mg of DHA) experienced a significant increase in lean body mass and significant decrease in fat mass compared to a group that took safflower oil (an omega-6 oil). The fish oil group also saw a tendency for decreases in cortisol, a hormone associated with belly fat gain when elevated.
Of great clinical importance, EPA and DHA supplementation during pregnancy has been associated with longer gestation and increased concentrations of EPA and DHA in fetal tissues (21). In 2005, preterm births accounted for 12.7% of all births in the United States, increasing the likelihood of health complications (22). Carrying a baby to term is very important because prematurity is the cause of various infant diseases and can lead to death; preterm delivery is an underlying factor for 85% of the deaths of normally formed infants (23). One mechanism by which EPA and DHA may decrease the incidence of preterm birth is by decreasing prostaglandin E2 and prostaglandin F2α production, therefore reducing inflammation within the uterus, which could be associated with preterm labor (21, 24). Several studies investigated EPA and DHA intake during pregnancy and its correlation with longer gestation. Conclusions were that EPA+DHA supplementation during pregnancy delayed the onset of delivery to term or closer to term; however, supplementation did not delay delivery to the point of being post-term (20, 23, 25). This supports the evidence that EPA+DHA ingestion leads to optimal pregnancy length. EPA+DHA supplementation reduced the HR of preterm delivery by 44% (95% CI: 14–64%) in those who consumed relatively low amounts of fish and 39% (95% CI: 16–56%) in those who consumed medium amounts of fish; however, a level of statistical significance was not met (P = 0.10) (23). The Judge et al. (20) study found that women who had DHA supplementation from gestation week 24 until full-term delivery carried their infants significantly (P = 0.019) longer than did the women in the placebo group. One study found that DHA supplementation after gestation week 21 led to fewer preterm births (<34 wk of gestation) in the DHA group compared with the control group (1.09% vs. 2.25%; adjusted RR, 0.49; 95% CI: 0.25–0.94; P = 0.03). Also, mean birth weight was 68 g heavier (95% CI: 23–114 g; P = 0.003) and fewer infants were of low birth weight in the DHA group compared with the control group (3.41% vs. 5.27%; adjusted RR, 0.65; 95% CI: 0.44–0.96; P = 0.03) (25).
Hamazaki, K., Syafruddin, D., Tunru, I. S., Azwir, M. F., Asih, P. B., Sawazaki, S., and Hamazaki, T. The effects of docosahexaenoic acid-rich fish oil on behavior, school attendance rate and malaria infection in school children--a double-blind, randomized, placebo-controlled trial in Lampung, Indonesia. Asia Pac.J Clin Nutr 2008;17(2):258-263. View abstract.

We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months’ duration and included adults at varying cardiovascular risk, mainly in high‐income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3‐ or ALA‐rich or enriched foods or dietary advice compared to placebo or usual diet.
Egert, S., Somoza, V., Kannenberg, F., Fobker, M., Krome, K., Erbersdobler, H. F., and Wahrburg, U. Influence of three rapeseed oil-rich diets, fortified with alpha-linolenic acid, eicosapentaenoic acid or docosahexaenoic acid on the composition and oxidizability of low-density lipoproteins: results of a controlled study in healthy volunteers. Eur J Clin Nutr 2007;61(3):314-325. View abstract.

Unintended weight loss is a problem that many patients with AD may face, and EPA+DHA supplementation has had a positive effect on weight gain in patients with AD. In a study using EPA+DHA supplementation, patients' weight significantly increased by 0.7 kg in the EPA+DHA treatment group at 6 mo (P = 0.02) and by 1.4 kg at 12 mo (P < 0.001) and was observed mainly in patients with a BMI <23 at the study start (54). This means that those patients with a lower BMI preferentially gained weight compared with those patients already with a higher BMI.
The number of presenters and the amount of information stuffed into an action-packed few days at times felt overwhelming, even for two dedicated omega-3 enthusiasts like us. But one important message did hit home: The omega-3 index could be a helpful indicator of various health risks, and we should all be paying closer attention to this measurement.
Fortier, M., Tremblay-Mercier, J., Plourde, M., Chouinard-Watkins, R., Vandal, M., Pifferi, F., Freemantle, E., and Cunnane, S. C. Higher plasma n-3 fatty acid status in the moderately healthy elderly in southern Quebec: higher fish intake or aging-related change in n-3 fatty acid metabolism? Prostaglandins Leukot.Essent.Fatty Acids 2010;82(4-6):277-280. View abstract.
Fish oil has only a small benefit on the risk of premature birth.[43][44] A 2015 meta-analysis of the effect of omega−3 supplementation during pregnancy did not demonstrate a decrease in the rate of preterm birth or improve outcomes in women with singleton pregnancies with no prior preterm births.[45] A systematic review and meta-analysis published the same year reached the opposite conclusion, specifically, that omega−3 fatty acids were effective in "preventing early and any preterm delivery".[46]

EPA and DHA are vital nutrients and may be taken to maintain healthy function of the following: brain and retina: DHA is a building block of tissue in the brain and retina of the eye. It helps with forming neural transmitters, such as phosphatidylserine, which is important for brain function. DHA is found in the retina of the eye and taking DHA may be necessary for maintaining healthy levels of DHA for normal eye function.

Fish oil supplements have been promoted as easy way to protect the heart, ease inflammation, improve mental health, and lengthen life. Such claims are one reason why Americans spend more than $1 billion a year on over-the-counter fish oil. And food companies are adding it to milk, yogurt, cereal, chocolate, cookies, juice, and hundreds of other foods.
The bottom line of all that is that there was no clear health benefit from consuming omega-3 fatty acids in food or supplements. There was a suggestion of a possible benefit from LCn3 on cardiac events, but this did not hold up when they took into consideration the quality of the evidence. The better trials, with less risk of bias, tended to be negative.
Given the wide-ranging importance and benefits of marine omega-3 fatty acids, it is important to eat fish or other seafood one to two times per week, particularly fatty (dark meat) fish that are richer in EPA and DHA. This is especially important for women who are pregnant or hoping to become pregnant and nursing mothers. From the third trimester until the second year of life, a developing child needs a steady supply of DHA to form the brain and other parts of the nervous system. Many women shy away from eating fish because of concerns that mercury and other possible contaminants might harm their babies, (9) yet the evidence for harm from lack of omega-3 fats is far more consistent, and a balance of benefit vs. risk is easily obtained. (To learn more about the controversy over contaminants in fatty fish, read Fish: Friend or Foe.)
In recent years, many people – particularly those who strictly follow a vegetarian or vegan diet – have believed that they do not have to consume animal products to get omega-3s, as long as they are consuming high amounts of plant-based omega-3s. But, as I mentioned before, most of the health benefits that you can get from omega-3 fats are linked to animal-based EPA and DHA fats – not plant-based ALA. They are simply NOT interchangeable.
Increased EPA levels in the blood and cell membranes effectively regulates inflammatory pathways and reduces total inflammatory ‘load’, so for any inflammatory conditions or concerns, we recommend a phase of pure EPA supplementation for at least 3-6 months. Pre-loading the body with pure EPA (without the opposing actions of DHA for uptake and utilisation) ensures constant replenishment of EPA ’supplies’ to support its high rate of turnover. Since DHA levels remain fairly stable and much lower daily amounts are required, DHA levels can be supported continually through dietary intake, or increased to 250 mg daily in later stages of treatment through supplementation.
In fact, fish oil is even dipping its way into mainstream medicine. In September 2018, Amarin Corporation, the biopharmaceutical developer of pharmaceutical-grade fish oil Vascepa, released preliminary findings of its double-blind clinical trial. In the study, researchers tracked more than 8,000 adults for a median 4.9 years. The mix of study participants had either established cardiovascular disease or type 2 diabetes and another cardiovascular disease risk factor, along with persistently elevated triglycerides.

36. Marchioli R, Barzi F, Bomba E, Chieffo C, Di Gregorio D, Di Mascio R, Franzosi MG, Geraci E, Levantesi G, Maggioni AP, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione. Circulation. 2002;105:1897–903. [PubMed]
Researchers are taking a hard look at a different sort of balance, this one between possible effects of marine and plant omega-3 fats on prostate cancer. Results from the Health Professionals Follow-up Study and others show that men whose diets are rich in EPA and DHA (mainly from fish and seafood) are less likely to develop advanced prostate cancer than those with low intake of EPA and DHA. (6) At the same time, some-but not all-studies show an increase in prostate cancer and advanced prostate cancer among men with high intakes of ALA (mainly from supplements). However, this effect is inconsistent. In the very large Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, for example, there was no link between ALA intake and early, late, or advanced prostate cancer. (7)

In some cases, fish oil pills may cause loose stools, nausea, diarrhea, and decreased appetite, fat in the stools, vomiting or constipation. These side effects can be minimized by taking a fish oil capsule that is coated, which is designed to help eliminate the "fish burps" many users complain about. Starting with low doses of the supplement and working up to a full dose can also help minimize side effects. You can also pair fish oil supplements with meals so that they enter your body more slowly, minimizing the risk of side effects occurring.
Mercury and polychlorinated biphenyls (PCBs) are common toxins in seafood. Although the U.S. banned the use of PCBs and DDT in 1976, these and other chemicals are still used in half the world's commercial chemical processes. Substances like these can hang around in the air, soil, and water for many years. They end up in the bodies of fish and animals.
In comparison, the omega-3s found in krill appear to be more rapidly incorporated into red blood cell phospholipids.7 This is important, because not only do scientists view the uptake of essential fatty acids in red blood cells as a biomarker for uptake into the brain,8 but additional research suggests that when omega-3 fatty acids such as DHA are bound to phospholipids as they are with krill, it increases their uptake to the brain.9 This is further supported by human clinical research, which suggests ingestion of phospholipid-bound EPA and DHA increase cognitive function scores to a greater degree compared with scores obtained when the fatty acids in the ingested oil were provided in the triglycerides storage form.10
Another study conducted by researchers at Rhode Island Hospital examined the relationship between fish oil supplementation and indicators of cognitive decline. The subjects of the study were older adults: 229 cognitively normal individuals, 397 patients with mild cognitive impairment and 193 patients with Alzheimer’s disease. They were assessed with neuropsychological tests and brain magnetic resonance imaging every six months while taking fish oil supplements. The study found that the adults taking fish oil (who had not yet developed Alzheimer’s and did not have genetic risk factor for developing Alzheimer’s known as APOE ε4) experienced significantly less cognitive decline and brain shrinkage than adults not taking fish oil. (9)
There was a significantly greater association of treatment with reduced anxiety symptoms in participants receiving omega-3 PUFAs than in those not receiving omega-3 PUFAs in the subgroup with an EPA percentage less than 60% (k, 11; Hedges g, 0.485; 95% CI, 0.017-0.954; P = .04; Figure 4)35,49,52,54-61 but no significant difference in the association of treatment with reduced anxiety symptoms between participants receiving omega-3 PUFAs and those not receiving omega-3 PUFAs in the subgroup with an EPA percentage of at least 60% (k, 9; Hedges g, 0.092; 95% CI, –0.102 to 0.285; P = .35) (Figure 4).33,34,36,47,48,50,51,53,60 There were no significantly different estimated effect sizes between these 2 subgroups by the interaction test (P = .13).

Metagenics offers a wide range of educational opportunities including webinars, group meetings, and seminars as part of our commitment to continuing functional medicine education. Our goal is to give our practitioners further insight to help address their patients’ unique health needs for a higher level of personalized, lifetime wellness care. We have been sharing this ever-growing body of nutritional and lifestyle research for over 25 years.
Anxiety, the most commonly experienced psychiatric symptom, is a psychological state derived from inappropriate or exaggerated fear leading to distress or impairment. The lifetime prevalence of any anxiety disorder is reported to be approximately 1 in 3.1 Anxiety is often comorbid with depressive disorders2 and is associated with lower health-related quality of life3 and increased risk of all-cause mortality.4 Treatment options include psychological treatments, such as cognitive-behavioral therapy and pharmacological treatments, mainly with selective serotonin reuptake inhibitors.5 Individuals with anxiety and related disorders tend to be more concerned about the potential adverse effects of pharmacological treatments (eg, sedation or drug dependence) and may be reluctant to engage in psychological treatments that can be time-consuming and costly, as well as sometimes limited in availability.6 Thus, evidence-based and safer treatments are required, especially for anxious patients with comorbid medical conditions.
Studies have also found that omega-3 fatty acids from fish oil are associated with improved survival rates for heart attack victims. A study published in the medical journal Circulation found that people who took a high dose of fish oil each for six months following the occurrence of a heart attack actually improved their hearts’ overall functioning and also reduced biomarkers of systemic inflammation. (20)
ALA is an essential fatty acid, meaning that your body can’t make it, so you must get it from the foods and beverages you consume. Your body can convert some ALA into EPA and then to DHA, but only in very small amounts. Therefore, getting EPA and DHA from foods (and dietary supplements if you take them) is the only practical way to increase levels of these omega-3 fatty acids in your body.
The most widely available dietary source of EPA and DHA is oily fish, such as salmon, herring, mackerel, anchovies, menhaden, and sardines. Oils from these fish have a profile of around seven times as much omega−3 as omega−6. Other oily fish, such as tuna, also contain n-3 in somewhat lesser amounts. Consumers of oily fish should be aware of the potential presence of heavy metals and fat-soluble pollutants like PCBs and dioxins, which are known to accumulate up the food chain. After extensive review, researchers from Harvard's School of Public Health in the Journal of the American Medical Association (2006) [110] reported that the benefits of fish intake generally far outweigh the potential risks. Although fish are a dietary source of omega−3 fatty acids, fish do not synthesize them; they obtain them from the algae (microalgae in particular) or plankton in their diets.[111] In the case of farmed fish, omega-3 fatty acids is provided by fish oil; In 2009, 81% of the global fish oil production is used by aquaculture.[112]
The US National Institutes of Health lists three conditions for which fish oil and other omega-3 sources are most highly recommended: hypertriglyceridemia (high triglyceride level), preventing secondary cardiovascular disease, and hypertension (high blood pressure). It then lists 27 other conditions for which there is less evidence. It also lists possible safety concerns: "Intake of 3 grams per day or greater of omega-3 fatty acids may increase the risk of bleeding, although there is little evidence of significant bleeding risk at lower doses. Very large intakes of fish oil/omega-3 fatty acids may increase the risk of hemorrhagic (bleeding) stroke."[12]
So why is an excess of DHA detrimental and an excess of EPA useful? DHA has a larger structure with two extra carbons and two extra double bonds, so it literally takes up more space in cell membranes than EPA. On the one hand, this is important because DHA plays a structural role in maintaining the fluidity of cell membranes ( essential for the normal function of proteins, channels and receptors that are also embedded in the membrane), but if a cell membrane becomes too saturated with DHA it can become too fluid, which can have a negative effect on cell function. EPA, on the other hand, is constantly utilised and always in demand.
Yamagishi, K., Iso, H., Date, C., Fukui, M., Wakai, K., Kikuchi, S., Inaba, Y., Tanabe, N., and Tamakoshi, A. Fish, omega-3 polyunsaturated fatty acids, and mortality from cardiovascular diseases in a nationwide community-based cohort of Japanese men and women the JACC (Japan Collaborative Cohort Study for Evaluation of Cancer Risk) Study. J.Am.Coll.Cardiol. 9-16-2008;52(12):988-996. View abstract.

A six week, double-blind study on fish oil supplementation for body composition showed that the group taking 4 grams/day of fish oil (contained 1600mg if EPA & 800mg of DHA) experienced a significant increase in lean body mass and significant decrease in fat mass compared to a group that took safflower oil (an omega-6 oil). The fish oil group also saw a tendency for decreases in cortisol, a hormone associated with belly fat gain when elevated.


^ Jump up to: a b Hooper L, Thompson RL, Harrison RA, Summerbell CD, Ness AR, Moore HJ, Worthington HV, Durrington PN, Higgins JP, Capps NE, Riemersma RA, Ebrahim SB, Davey Smith G (2006). "Risks and benefits of omega−3 fats for mortality, cardiovascular disease, and cancer: systematic review". BMJ. 332 (7544): 752–60. doi:10.1136/bmj.38755.366331.2F. PMC 1420708. PMID 16565093. Retrieved 2006-07-07.[permanent dead link]
Stiefel, P., Ruiz-Gutierrez, V., Gajon, E., Acosta, D., Garcia-Donas, M. A., Madrazo, J., Villar, J., and Carneado, J. Sodium transport kinetics, cell membrane lipid composition, neural conduction and metabolic control in type 1 diabetic patients. Changes after a low-dose n-3 fatty acid dietary intervention. Ann Nutr Metab 1999;43(2):113-120. View abstract.
×