The American Heart Association (AHA) recommends that everyone eats fish (particularly fatty, coldwater fish) at least twice a week. Salmon, mackerel, herring, sardines, lake trout, and tuna are especially high in omega-3 fatty acids. While foods are your best bet for getting omega-3s in your diet, fish oil supplements are also available for those who do not like fish. The heart-healthy benefits of regular doses of fish oil supplements are unclear, so talk to your doctor to see if they're right for you. If you have heart disease or high triglyceride levels, you may need even more omega-3 fatty acids. Ask your doctor if you should take higher doses of fish oil supplements to get the omega-3s you need.
Human diet has changed rapidly in recent centuries resulting in a reported increased diet of omega−6 in comparison to omega−3.[83] The rapid evolution of human diet away from a 1:1 omega−3 and omega−6 ratio, such as during the Neolithic Agricultural Revolution, has presumably been too fast for humans to have adapted to biological profiles adept at balancing omega−3 and omega−6 ratios of 1:1.[84] This is commonly believed to be the reason why modern diets are correlated with many inflammatory disorders.[83] While omega−3 polyunsaturated fatty acids may be beneficial in preventing heart disease in humans, the level of omega−6 polyunsaturated fatty acids (and, therefore, the ratio) does not matter.[78][85]

The use of DHA by persons with epilepsy could decrease the frequency of their seizures. Studies have shown that children with epilepsy had a major improvement, i.e. decrease in the frequency of their seizures, but another study showed mixed results with 57 adults taking DHA supplementation. The 57 subjects demonstrated a decreased frequency of seizures for the first six weeks of the study, but for some, it was just a temporary improvement (R).


EPA is the precursor to DHA in the body and can be converted to DHA with the enzyme delta-6 desaturase, but this process is inefficient in many people (much like the inefficiency of short-chain omega-3s to long-chain). For those individuals taking pure EPA products as well as those taking our EPA-rich products, we still recommend eating oily fish at least once each week to provide a natural source of DHA. Fish provides a unique nutritional package, supplying the diet with important amino acids (the building blocks of proteins) and antioxidants, including vitamins and minerals needed to process fats, so eating fish will also support the natural enzyme-dependent EPA to DHA conversion.
Higher visual acuity after DHA supplementation is a consistent finding in infants born preterm. For infants born at term, the results are less consistent and are better explained by differences in sensitivity of the visual acuity test (electrophysiologic tests being more sensitive than subjective tests) or by differences in the amount of DHA included in the experimental formula.

Some people who are hypersensitive to fish or have a known allergy to fish products may have a negative reaction to fatty acids which were derived from fish. Some fish oil tablets are also produced with alpha-linolenic acids which come from nuts, which may aggravate those which have an allergy to these products. In many cases these allergies will manifest themselves as a skin rash, but the symptoms could be more severe depending on the severity of your allergies. People with this concern will need to avoid using these products.
We are now fortunate to understand how these fats work in combination and in isolation, how they are digested, absorbed and utilised in the body, so we are able to tailor different blends of EPA and DHA according to the health benefits we are seeking to achieve. At Igennus, we have long specialised in the role of the omega-3 fatty acid EPA in clinical nutrition, as a powerful tool in the patient’s ‘toolkit’ for helping to regulate inflammation by restoring several biological markers, known as the omega-6 to omega-3 ratio and AA to EPA ratio. Before we discuss the therapeutic role of EPA in nutritional medicine, here’s a very brief summary of the role of both EPA and DHA in health throughout life.
Today, some doctors are starting to measure the omega-3 index levels of their patients, just like they do with cholesterol levels. However, if your doctor does not offer this, several companies provide a quick and easy blood test you can conduct yourself, including OmegaQuant. This company is run by by Dr. William Harris, one of the scientists who initially developed the concept of the omega-3 index.

According to the Cardiovascular Research Institute in Maastricht in Netherlands, “Epidemiological studies show that replacing fat with carbohydrates may even be worse [than the Western-type high-fat diet] and that various polyunsaturated fatty acids (FA) have beneficial rather than detrimental effects on CVD (cardiovascular disease) outcome.” This includes fish-oil fatty acids with anti-inflammatory properties, which can help prevent and reverse a plethora of cardiovascular diseases. (19)
It helps maintain a good luster of the hair because omega-3 has growth stimulating properties since it provides nourishment to the follicles. It aids in the development of hair and in preventing hair loss. A good supply of protein is also necessary for hair growth, and since most fish varieties are rich in protein, eating fish helps to keep hair healthy.
The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), found in plant oils, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), both commonly found in marine oils.[2] Marine algae and phytoplankton are primary sources of omega−3 fatty acids. Common sources of plant oils containing ALA include walnut, edible seeds, clary sage seed oil, algal oil, flaxseed oil, Sacha Inchi oil, Echium oil, and hemp oil, while sources of animal omega−3 fatty acids EPA and DHA include fish, fish oils, eggs from chickens fed EPA and DHA, squid oils, and krill oil. Dietary supplementation with omega−3 fatty acids does not appear to affect the risk of death, cancer or heart disease.[4][5] Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes or any vascular disease outcomes.[6][7]
Bell, J. G., Miller, D., MacDonald, D. J., MacKinlay, E. E., Dick, J. R., Cheseldine, S., Boyle, R. M., Graham, C., and O'Hare, A. E. The fatty acid compositions of erythrocyte and plasma polar lipids in children with autism, developmental delay or typically developing controls and the effect of fish oil intake. Br J Nutr 2010;103(8):1160-1167. View abstract.
Heavy metal poisoning by the body's accumulation of traces of heavy metals, in particular mercury, lead, nickel, arsenic, and cadmium, is a possible risk from consuming fish oil supplements.[medical citation needed] Also, other contaminants (PCBs, furans, dioxins, and PBDEs) might be found, especially in less-refined fish oil supplements.[citation needed] However, heavy metal toxicity from consuming fish oil supplements is highly unlikely, because heavy metals selectively bind with protein in the fish flesh rather than accumulate in the oil. An independent test in 2005 of 44 fish oils on the US market found all of the products passed safety standards for potential contaminants.[107][unreliable source?]
Most leafy green vegetables have significant amounts of omega-3, and spinach is no exception. Despite its villainous reputation, raw spinach actually has a mild flavor, making it an ideal base for salads or a crunchy addition to sandwiches. Many people add spinach to eggs, soups, or pasta dishes without impacting flavor. If you’re dealing with a particularly picky eater, though, try some of the recipes in Jessica Seinfeld’s Deceptively Delicious — her spinach and carrot brownies are tasty, healthy, and chocolaty to boot!
The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), found in plant oils, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), both commonly found in marine oils.[2] Marine algae and phytoplankton are primary sources of omega−3 fatty acids. Common sources of plant oils containing ALA include walnut, edible seeds, clary sage seed oil, algal oil, flaxseed oil, Sacha Inchi oil, Echium oil, and hemp oil, while sources of animal omega−3 fatty acids EPA and DHA include fish, fish oils, eggs from chickens fed EPA and DHA, squid oils, and krill oil. Dietary supplementation with omega−3 fatty acids does not appear to affect the risk of death, cancer or heart disease.[4][5] Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes or any vascular disease outcomes.[6][7]
The question is whether the observed cardiovascular benefits often found among fish eaters is due solely to the oils in fish or to some other characteristics of seafood or to still other factors common to those who eat lots of fish, like eating less meat or pursuing a healthier lifestyle over all. Whatever the answer, it does not seem to be fish oil supplements.
Samsonov, M. A., Vasil'ev, A. V., Pogozheva, A. V., Pokrovskaia, G. R., Mal'tsev, G. I., Biiasheva, I. R., and Orlova, L. A. [The effect of a soy protein isolate and sources of polyunsaturated omega-3 fatty acids in an anti-atherosclerotic diet on the lipid spectrum of blood serum and immunological indicators in patients with ischemic heart disease and hypertension]. Vopr.Med Khim. 1992;38(5):47-50. View abstract.
Most U.S. adults fail to consume adequate amounts of foods rich in EPA and DHA on a regular basis (at least 8 ounces of fatty fish per week is recommended), and probably consume too many omega-6 fats in comparison (soybean oil, canola oil, cottonseed oil, etc.). This omega-3:omega-6 imbalance can have a negative effect on inflammation patterns and may also be implicated as a contributing factor to other processes related to cellular metabolism, hormone signaling, and even weight regulation.
This constant sweeping motion of DHA also causes the breakup of lipid rafts in membranes (8). Disruption of these islands of relatively solid lipids makes it more difficult for cancer cells to continue to survive and more difficult for inflammatory cytokines to initiate the signaling responses to turn on inflammatory genes (9). In addition, the greater spatial characteristics of DHA increase the size of LDL particles to a greater extent compared to EPA. As a result, DHA helps reduce the entry of these enlarged LDL particles into the muscle cells that line the artery thus reducing the likelihood of developing atherosclerotic lesions (10). Thus the increased spatial territory swept out by DHA is good news for making certain areas of membranes more fluid or lipoprotein particles larger, even though it reduces the benefits of DHA in competing with AA for key enzymes important in the development of cellular inflammation.

Since EPA and DHA are both essential for health and appear together in nature, many studies have attempted to treat clinical conditions with combined EPA and DHA oils, but the outcomes have been varied, contradictory and disappointing. Consequently, researchers have started to investigate the individual actions of EPA and DHA in isolation, in numerous health conditions where an omega-3 deficiency is related to symptoms or known to play a causative role. The emerging evidence shows marked differences between how these two fatty acids affect us – not just at the cellular level but also the body as a whole.
DHA is especially vital for infant and child brain and nervous system development, as well as visual function. In older children, high DHA levels have been shown to improve learning ability, while deficiencies have been linked to learning problems and ADHD. And in adults, some studies have shown that DHA helps protect against cognitive decline and Alzheimer’s disease.
Maternal nutrition guidelines have always stressed a diet including sufficient caloric and protein requirements, but recently fatty acids have also been deemed important (17). This is partially due to the fact that EPA and DHA supplementation during pregnancy has been associated with multiple benefits for the infant (Table 1). During pregnancy, the placenta transfers nutrients, including DHA, from the mother to the fetus (18). The amount of omega-3 fatty acid in the fetus is correlated with the amount ingested by the mother, so it is essential that the mother has adequate nutrition (19). The 2010 U.S. Department of Health and Human Services dietary guidelines recommend that women who are pregnant or breastfeeding should “consume 8 to 12 ounces of seafood per week from a variety of seafood types” (12). Ingesting 8–12 oz of seafood per week, depending on the type of fish, is equivalent to ∼300–900 mg EPA+DHA per day. Unfortunately, this amount is not being met by most mothers in the United States and Canada, which means that infants many not be receiving adequate amounts of these vital nutrients in the womb (20).
In our analysis, most of the included studies showed a positive Hedges g toward a beneficial effect of omega-3 PUFAs in anxiety reduction, although not all findings were statistically significant. However, after merging of these effect sizes from all of the included studies, the main result showed significant findings in our meta-analysis. Despite the significant heterogeneity, no significant publication bias was found among these 19 studies.
The effect of fish oil on incident atrial fibrillation has not been studied in large randomized trials, and observational population-based trials show mixed results. The Danish Diet, Cancer and Health Study, and the Rotterdam Study followed 47,000 and 5100 middle-aged adults, respectively.45,46 Neither study found that the consumption of fish oil affected the incidence of atrial fibrillation. Similar findings were seen in the Women’s Health Initiative where there was no association between fish and omega-3 FA intake regarding incident atrial fibrillation.47 However, in a 12-year prospective, observational study of 4815 adults over the age of 65, daily fish consumption was associated with a 31% risk reduction in incident atrial fibrillation.48
Sekikawa, A., Curb, D., Ueshima, H., El-Saed, A., Kadowaki, T., Abbott, R. D., ... Kuller, L. H. (2008 August 5). Marine-derived n-3 fatty acids and atherosclerosis in Japanese, Japanese Americans, and Whites: a cross-sectional study. Journal of the American College of Cardiology 52(6), 417–424. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736602/

Several studies suggest that people suffering symptoms of depression and/or anxiety see improvement after adding an omega-3 supplement to their routine, even in double-blinded, randomized, controlled trials. (29, 30, 31, 32, 33) At least one study comparing a common depression medication found omega-3 supplements to be just as effective in combating depression symptoms. (34)
Science is dynamic, not static, and as scientific understanding advances scientists sometimes have to modify their positions. Dr. Kidd’s position on EPA and DHA has now changed due to advances in the clinical and basic scientific research. Though the brain carries predominantly DHA and very little EPA, clinical trial results clearly indicate EPA has benefit for mood and probably other higher brain functions. At the basic science level, it has become clear that both EPA and DHA, not DHA alone, are required for the brain to make new nerve cells. Dr. Kidd very closely monitors the research on EPA and… Read more »
“This systematic review did find moderate evidence that ALA, found in plant oils (such as rapeseed or canola oil) and nuts (particularly walnuts) may be slightly protective of some diseases of the heart and circulation. However, the effect is very small, 143 people would need to increase their ALA intake to prevent one person developing arrhythmia. One thousand people would need to increase their ALA intake to prevent one person dying of coronary heart disease or experiencing a cardiovascular event.  ALA is an essential fatty acid, an important part of a balanced diet, and increasing intakes may be slightly beneficial for prevention or treatment of cardiovascular disease."
4. Omega-3 has been found to save the lives of children going through short bowel syndrome (SBS), which is uncommon but impacts thousands of people in the United States. SBS can occur from birth (when a portion of the intestine fails to develop) or due to an infectious inflammatory disease striking premature newborns. In adults, it can be caused by surgery for Crohn's disease or injury.
The 'essential' fatty acids were given their name when researchers found that they are essential to normal growth in young children and animals. The omega−3 fatty acid DHA, also known as docosahexaenoic acid, is found in high abundance in the human brain.[70] It is produced by a desaturation process, but humans lack the desaturase enzyme, which acts to insert double bonds at the ω6 and ω3 position.[70] Therefore, the ω6 and ω3 polyunsaturated fatty acids cannot be synthesized and are appropriately called essential fatty acids.[70]
Omega-3 fatty acids, which are found abundantly in fish oil, are increasingly being used in the management of cardiovascular disease. It is clear that fish oil, in clinically used doses (typically 4 g/d of eicosapentaenoic acid and docosahexaenoic acid) reduce high triglycerides. However, the role of omega-3 fatty acids in reducing mortality, sudden death, arrhythmias, myocardial infarction, and heart failure has not yet been established. This review will focus on the current clinical uses of fish oil and provide an update on their effects on triglycerides, coronary artery disease, heart failure, and arrhythmia. We will explore the dietary sources of fish oil as compared with drug therapy, and discuss the use of fish oil products in combination with other commonly used lipid-lowering agents. We will examine the underlying mechanism of fish oil’s action on triglyceride reduction, plaque stability, and effect in diabetes, and review the newly discovered anti-inflammatory effects of fish oil. Finally, we will examine the limitations of current data and suggest recommendations for fish oil use.
This systematic review and meta-analysis of clinical trials conducted on participants with clinical anxiety symptoms provides the first meta-analytic evidence, to our knowledge, that omega-3 PUFA treatment may be associated with anxiety reduction, which might not only be due to a potential placebo effect, but also from some associations of treatment with reduced anxiety symptoms. The beneficial anxiolytic effects of omega-3 PUFAs might be stronger in participants with specific clinical diagnoses than in those without specific clinical conditions. Larger and well-designed clinical trials should be performed with high-dose omega-3 PUFAs, provided as monotherapy and as adjunctive treatment to standard therapy.
Docosahexaenoic acid (DHA) found primarily in fish oil, this is the ultimate form of fatty acid in humans. Most people get far too little of this all-important fatty acid, especially since the conversion of ALA to DHA is slow and minimally yielding. Getting a daily dose of of DHA (600 to 1000 mg) from supplements is preferable to reap the health benefits. You have a choice of taking a fish oil supplement or one derived from algae or krill, a shrimp-like crustacean.
To evaluate the potential placebo effect, we made further subgrouping analyses. In the subgroups of studies using placebo controls, the omega-3 PUFAs still revealed a consistent positive anxiolytic association with anxiety symptoms. These phenomena meant that the anxiolytic effect of omega-3 PUFAs is probably not entirely owing to the placebo effect.

Despite this one study, you should still consider eating fish and other seafood as a healthy strategy. If we could absolutely, positively say that the benefits of eating seafood comes entirely from omega-3 fats, then downing fish oil pills would be an alternative to eating fish. But it’s more than likely that you need the entire orchestra of fish fats, vitamins, minerals, and supporting molecules, rather than the lone notes of EPA and DHA.
Fish oils seem to decrease blood pressure. Taking fish oils along with medications for high blood pressure might cause your blood pressure to go too low.Some medications for high blood pressure include captopril (Capoten), enalapril (Vasotec), losartan (Cozaar), valsartan (Diovan), diltiazem (Cardizem), Amlodipine (Norvasc), hydrochlorothiazide (HydroDiuril), furosemide (Lasix), and many others.
×