Between the ages of five and 65, the majority of the body’s needs can be met by using EPA-rich oils and eating fish, marine products, organic greens and pastured animal products. EPA levels are under constant demand and low EPA levels in adolescents and adults correlates strongly with development of mental health issues, including depression, dyslexia and dyspraxia, heart problems, joint and bone conditions, as well as neurodegenerative diseases such as MS and Parkinson’s. EPA also protects our genes and cell cycle, as well as helping to keep our stress response regulated, so an adequate supply of EPA throughout adult life can help prevent a range of chronic illness.
A report by the Harvard Medical School studied five popular brands of fish oil, including Nordic Ultimate, Kirkland and CVS. They found that the brands had "negligible amounts of mercury, suggesting either that mercury is removed during the manufacturing of purified fish oil or that the fish sources used in these commercial preparations are relatively mercury-free".[66]
There is some evidence that omega−3 fatty acids are related to mental health,[47] including that they may tentatively be useful as an add-on for the treatment of depression associated with bipolar disorder.[48] Significant benefits due to EPA supplementation were only seen, however, when treating depressive symptoms and not manic symptoms suggesting a link between omega−3 and depressive mood.[48] There is also preliminary evidence that EPA supplementation is helpful in cases of depression.[49] The link between omega−3 and depression has been attributed to the fact that many of the products of the omega−3 synthesis pathway play key roles in regulating inflammation (such as prostaglandin E3) which have been linked to depression.[50] This link to inflammation regulation has been supported in both in vitro[51] and in vivo studies as well as in meta-analysis studies.[33] The exact mechanism in which omega−3 acts upon the inflammatory system is still controversial as it was commonly believed to have anti-inflammatory effects.[52]
In many cases, people are recommended to consume fish oil because it is an easy way to get additional omega-3 fatty acids into their diet. Omega-3 fats can be used to reduce swelling or to prevent blood clots which could cause major cardiovascular damage. There are many other conditions which can be decreased or improved with the use of fish oil. In most cases fish oil is used to help reduce high triglycerides which can cause serious conditions like diabetes or heart disease.

McNamara, R. K., Able, J., Jandacek, R., Rider, T., Tso, P., Eliassen, J. C., Alfieri, D., Weber, W., Jarvis, K., DelBello, M. P., Strakowski, S. M., and Adler, C. M. Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: a placebo-controlled, dose-ranging, functional magnetic resonance imaging study. Am J Clin Nutr 2010;91(4):1060-1067. View abstract.

“Lipid peroxidation induced by DHA enrichment modifies paracellular permeability in Caco-2 cells: protective role of taurine.” We conclude that hydrogen peroxide and peroxynitrite may be involved in the DHA-induced increase in paracellular permeability and that the protective role of taurine may be in part related to its capacity to counteract the effects of hydrogen peroxide.
Excessive amounts of chemicals. Using excessive amounts of fish products such as shark, farm raised salmon or mackerel can be dangerous. These products may be exposed to excessive amounts of chemicals such as mercury which can build up in the body and cause negative effects. While it is healthy to consume fish, it is important to seek out quality sources to avoid exposure to these chemicals. Using a supplement to get high levels of omega-3s into your system is also recommended because these products are produced in such a way that they will not expose you to unsafe chemicals.
According to the National Psoriasis Foundation, fish oil can aid in preventing or slowing heart disease, which is especially great for psoriasis and psoriatic arthritis sufferers who are at a higher risk of developing heart disease. (27) When it comes to using fish oil supplements for the alleviation of psoriasis symptoms, studies have been mixed with some showing improvement but others showing no effect. If you suffer from psoriasis, you may want to try a fish oil supplement, or else I highly recommend that you make sure to have fish rich in omega-3s regularly.
ALA is an essential fatty acid, meaning that your body can’t make it, so you must get it from the foods and beverages you consume. Your body can convert some ALA into EPA and then to DHA, but only in very small amounts. Therefore, getting EPA and DHA from foods (and dietary supplements if you take them) is the only practical way to increase levels of these omega-3 fatty acids in your body.
We hypothesized that omega-3 PUFAs might have anxiolytic effects in patients with significant anxiety- and fear-related symptoms. However, there have been no systematic reviews of this topic to date. Thus, we examined the anxiolytic effects of omega-3 PUFAs in participants with elevated anxiety symptoms in the results of clinical trials to determine the overall efficacy of omega-3 PUFAs for anxiety symptoms irrespective of diagnosis.

Oe, H., Hozumi, T., Murata, E., Matsuura, H., Negishi, K., Matsumura, Y., Iwata, S., Ogawa, K., Sugioka, K., Takemoto, Y., Shimada, K., Yoshiyama, M., Ishikura, Y., Kiso, Y., and Yoshikawa, J. Arachidonic acid and docosahexaenoic acid supplementation increases coronary flow velocity reserve in Japanese elderly individuals. Heart 2008;94(3):316-321. View abstract.

Krill oil is a source of omega−3 fatty acids.[116] The effect of krill oil, at a lower dose of EPA + DHA (62.8%), was demonstrated to be similar to that of fish oil on blood lipid levels and markers of inflammation in healthy humans.[117] While not an endangered species, krill are a mainstay of the diets of many ocean-based species including whales, causing environmental and scientific concerns about their sustainability.[118][119][120]

Cardiovascular disease is the cause of 38% of all deaths in the United States, many of which are preventable (28). Chronic inflammation is thought to be the cause of many chronic diseases, including cardiovascular disease (29). EPA and DHA are thought to have antiinflammatory effects and a role in oxidative stress (30) and to improve cellular function through changes in gene expression (31). In a study that used human blood samples, EPA+DHA intake changed the expression of 1040 genes and resulted in a decreased expression of genes involved in inflammatory and atherogenesis-related pathways, such as nuclear transcription factor κB signaling, eicosanoid synthesis, scavenger receptor activity, adipogenesis, and hypoxia signaling (31). Circulating markers of inflammation, such as C-reactive protein (CRP), TNF α, and some ILs (IL-6, IL-1), correlate with an increased probability of experiencing a cardiovascular event (32). Inflammatory markers such as IL-6 trigger CRP to be synthesized by the liver, and elevated levels of CRP are associated with an increased risk of the development of cardiovascular disease (33). A study of 89 patients showed that those treated with EPA+DHA had a significant reduction in high-sensitivity CRP (66.7%, P < 0.01) (33). The same study also showed a significant reduction in heat shock protein 27 antibody titers (57.69%, P < 0.05), which have been shown to be overexpressed in heart muscle cells after a return of blood flow after a period of ischemia (ischemia-reperfusion injury) and may potentially have a cardioprotective effect (33).
Rondanelli, M., Giacosa, A., Opizzi, A., Pelucchi, C., La, Vecchia C., Montorfano, G., Negroni, M., Berra, B., Politi, P., and Rizzo, A. M. Effect of omega-3 fatty acids supplementation on depressive symptoms and on health-related quality of life in the treatment of elderly women with depression: a double-blind, placebo-controlled, randomized clinical trial. J.Am.Coll.Nutr. 2010;29(1):55-64. View abstract.
In total, 19 articles with 19 data sets revealed the main results of the meta-analysis, namely that there was a significantly better association of treatment with reduced anxiety symptoms in patients receiving omega-3 PUFA treatment than in those not receiving it (k, 19; Hedges g, 0.374; 95% CI, 0.081-0.666; P = .01; Figure 2), with significant heterogeneity (Cochran Q, 178.820; df, 18; I2, 89.934%; P < .001) but no significant publication bias via Egger regression (t, 1.736; df, 17; P = .10) or inspection of the funnel plot (eFigure 2 in the Supplement). According to the trim-and-fill test, there was no need for adjustment for publication bias. The meta-analysis results remained significant after removal of any one of the included studies, which indicated that the significant results are not owing to any single study.
CONDITIONS OF USE AND IMPORTANT INFORMATION: This information is meant to supplement, not replace advice from your doctor or healthcare provider and is not meant to cover all possible uses, precautions, interactions or adverse effects. This information may not fit your specific health circumstances. Never delay or disregard seeking professional medical advice from your doctor or other qualified health care provider because of something you have read on WebMD. You should always speak with your doctor or health care professional before you start, stop, or change any prescribed part of your health care plan or treatment and to determine what course of therapy is right for you.
Schilling, J., Vranjes, N., Fierz, W., Joller, H., Gyurech, D., Ludwig, E., Marathias, K., and Geroulanos, S. Clinical outcome and immunology of postoperative arginine, omega-3 fatty acids, and nucleotide-enriched enteral feeding: a randomized prospective comparison with standard enteral and low calorie/low fat i.v. solutions. Nutrition 1996;12(6):423-429. View abstract.
Finally, it is often assumed since there are not high levels of EPA in the brain, that it is not important for neurological function. Actually it is key for reducing neuro-inflammation by competing against AA for access to the same enzymes needed to produce inflammatory eicosanoids. However, once EPA enters into the brain it is rapidly oxidized (2,3). This is not the case with DHA (4). The only way to control cellular inflammation in the brain is to maintain high levels of EPA in the blood. This is why all the work on depression, ADHD, brain trauma, etc. have demonstrated EPA to be superior to DHA (5).
Meta-analyses (research that combines and analyzes results of multiple studies) generally suggest that the omega-3s are effective, but the findings are not unanimous because of variability between doses, ratios of EPA to DHA, and other study design issues. The most effective preparations appear to have at least 60% EPA relative to DHA. While DHA is thought to be less effective as an antidepressant, it may have protective effects against suicide. Recent work at Massachusetts General Hospital and Emory University suggests that depressed individuals who are overweight and have elevated inflammatory activity may be particularly good candidates for EPA treatment.

The American Heart Association (AHA) has made recommendations for EPA and DHA due to their cardiovascular benefits: individuals with no history of coronary heart disease or myocardial infarction should consume oily fish two times per week; and "Treatment is reasonable" for those having been diagnosed with coronary heart disease. For the latter the AHA does not recommend a specific amount of EPA + DHA, although it notes that most trials were at or close to 1000 mg/day. The benefit appears to be on the order of a 9% decrease in relative risk.[106] The European Food Safety Authority (EFSA) approved a claim "EPA and DHA contributes to the normal function of the heart" for products that contain at least 250 mg EPA + DHA. The report did not address the issue of people with pre-existing heart disease. The World Health Organization recommends regular fish consumption (1-2 servings per week, equivalent to 200 to 500 mg/day EPA + DHA) as protective against coronary heart disease and ischaemic stroke.
Secondary prevention fish oil studies demonstrate a significant reduction in MI. But unfortunately, both the observational and randomized trials were conducted in an era before the widespread use of HMG-CoA reductase inhibitors, and therefore, the incremental benefit is still unknown. Nevertheless, in patients receiving antiplatelet and anticoagulant therapy in addition to fish oil supplementation (even at doses as high as 4 g per day), no serious adverse complications have been reported.
^ Jump up to: a b MacLean CH, Newberry SJ, Mojica WA, Khanna P, Issa AM, Suttorp MJ, Lim YW, Traina SB, Hilton L, Garland R, Morton SC (2006-01-25). "Effects of omega−3 fatty acids on cancer risk: a systematic review". JAMA: The Journal of the American Medical Association. 295 (4): 403–15. doi:10.1001/jama.295.4.403. PMID 16434631. Retrieved 2006-07-07.

Evidence in the population generally does not support a beneficial role for omega−3 fatty acid supplementation in preventing cardiovascular disease (including myocardial infarction and sudden cardiac death) or stroke.[4][19][20][21] A 2018 meta-analysis found no support that daily intake of one gram of omega-3 fatty acid in individuals with a history of coronary heart disease prevents fatal coronary heart disease, nonfatal myocardial infarction or any other vascular event.[6] However, omega−3 fatty acid supplementation greater than one gram daily for at least a year may be protective against cardiac death, sudden death, and myocardial infarction in people who have a history of cardiovascular disease.[22] No protective effect against the development of stroke or all-cause mortality was seen in this population.[22] Eating a diet high in fish that contain long chain omega−3 fatty acids does appear to decrease the risk of stroke.[23] Fish oil supplementation has not been shown to benefit revascularization or abnormal heart rhythms and has no effect on heart failure hospital admission rates.[24] Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes.[7]

There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.

Muñoz MA, Liu W, Delaney JA, Brown E, Mugavero MJ, Mathews WC, Napravnik S, Willig JH, Eron JJ, Hunt PW, Kahn JO, Saag MS, Kitahata MM, Crane HM. Comparative effectiveness of fish oil versus fenofibrate, gemfibrozil, and atorvastatin on lowering triglyceride levels among HIV-infected patients in routine clinical care. J Acquir Immune Defic Syndr 2013;64(3):254-60. View abstract.
In fact, fish oil is even dipping its way into mainstream medicine. In September 2018, Amarin Corporation, the biopharmaceutical developer of pharmaceutical-grade fish oil Vascepa, released preliminary findings of its double-blind clinical trial. In the study, researchers tracked more than 8,000 adults for a median 4.9 years. The mix of study participants had either established cardiovascular disease or type 2 diabetes and another cardiovascular disease risk factor, along with persistently elevated triglycerides.
The Cochrane researchers found that increasing long-chain omega 3 provides little if any benefit on most outcomes that they looked at. They found high certainty evidence that long-chain omega 3 fats had little or no meaningful effect on the risk of death from any cause. The risk of death from any cause was 8.8% in people who had increased their intake of omega 3 fats, compared with 9% in people in the control groups.
Egert, S., Somoza, V., Kannenberg, F., Fobker, M., Krome, K., Erbersdobler, H. F., and Wahrburg, U. Influence of three rapeseed oil-rich diets, fortified with alpha-linolenic acid, eicosapentaenoic acid or docosahexaenoic acid on the composition and oxidizability of low-density lipoproteins: results of a controlled study in healthy volunteers. Eur J Clin Nutr 2007;61(3):314-325. View abstract.
Harper, M., Thom, E., Klebanoff, M. A., Thorp, J., Jr., Sorokin, Y., Varner, M. W., Wapner, R. J., Caritis, S. N., Iams, J. D., Carpenter, M. W., Peaceman, A. M., Mercer, B. M., Sciscione, A., Rouse, D. J., Ramin, S. M., and Anderson, G. D. Omega-3 fatty acid supplementation to prevent recurrent preterm birth: a randomized controlled trial. Obstet Gynecol 2010;115(2 Pt 1):234-242. View abstract.
While fish for dinner is one way to get EPA and DHA, most people don’t eat the suggested two to three servings of oily fish per week to reap the benefits of omega-3s. What’s more, there are extremely few food sources, aside from fish, that naturally provide EPA and DHA. With all the benefits that can come from fish oil, it’s no surprise that these supplements are increasing in popularity.

Tanaka, K., Ishikawa, Y., Yokoyama, M., Origasa, H., Matsuzaki, M., Saito, Y., Matsuzawa, Y., Sasaki, J., Oikawa, S., Hishida, H., Itakura, H., Kita, T., Kitabatake, A., Nakaya, N., Sakata, T., Shimada, K., and Shirato, K. Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: subanalysis of the JELIS trial. Stroke 2008;39(7):2052-2058. View abstract.
Wright, S. A., O'Prey, F. M., McHenry, M. T., Leahey, W. J., Devine, A. B., Duffy, E. M., Johnston, D. G., Finch, M. B., Bell, A. L., and McVeigh, G. E. A randomised interventional trial of omega-3-polyunsaturated fatty acids on endothelial function and disease activity in systemic lupus erythematosus. Ann.Rheum.Dis. 2008;67(6):841-848. View abstract.

We’ve written about the dose necessary to achieve measurable benefits before. However, a person’s actual omega-3 intake can be tricky to estimate. Even if you eat at least two servings of fatty fish per week, as the American Heart Association recommends (10), your fish might contain more or less omega-3s depending on the fish species, the time of year, and how you cook it. Even taking fish oil supplements isn’t always straightforward, as dose can be impacted by numerous bioavailability factors, as well as genetics, age, gender, medication-use and lifestyle.

Soy can get a bad rap — and may indeed cause problems for people with certain food sensitivities — but this delicious bean is one of the most powerful (and versatile) ways to add omega-3 to your diet. Whole soybeans (known as edamame) are a favorite protein-packed snack for vegetarians; more processed forms (including tofu, soy milk, and soybean-based cooking oil) make soy infinitely more accessible. For some ideas, check out the 1998 classic, The Whole Soy Cookbook, which outlines how to cook with soy-based products ranging from miso to tempeh and beyond.
If you find yourself in a position where you are just not eating any of these foods, and you want to get enough omega-3 fatty acids, then I think fish oil is okay, but I would limit not the amount of fish oil but the amount listed on the label of EPA and DHA combined. I would limit that amount to around 250 milligrams per day because I don’t think most people need more than that. Some signs that you might not be getting enough omega-3 fatty acids include chronic low-grade inflammation, poor visual acuity, slower mental processing, trouble learning, and possibly Alzheimer’s disease and psychiatric conditions, like depression, anxiety, and attention deficit and hyperactivity disorder, ADHD.
Irish AB, Viecelli AK, Hawley CM, et al; Omega-3 Fatty Acids (Fish Oils) and Aspirin in Vascular Access Outcomes in Renal Disease (FAVOURED) Study Collaborative Group. Effect of fish oil supplementation and aspirin use on arteriovenous fistula failure in patients requiring hemodialysis: A randomized clinical trial. JAMA Intern Med. 2017;177(2):184-193. View abstract.
The two key omega-3 fatty acids are docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Fatty fish like salmon, mackerel, and sardines are rich in these omega-3s. Some plants are rich in another type of omega-3 fatty acid, alpha-linolenic acid, which the body can convert to DHA and EPA. Good sources of these are flaxseeds, chia seeds, walnuts, pumpkin seeds, and canola oil.
Fish oil is a concentrated source of omega-3 fats, which are also called ω-3 fatty acids or n-3 fatty acids. To get more scientific, omega-3s are long-chain polyunsaturated fatty acids, or PUFAs. Our bodies are able to make most of the fats we need need, but that’s not true for omega-3 fatty acids. When it comes to these essential fats, we need to get them from omega-3 foods or supplements.
The University of East Anglia (UEA) is a UK Top 15 university. Known for its world-leading research and outstanding student experience, it was awarded Gold in the Teaching Excellence Framework and  is a leading member of Norwich Research Park, one of Europe’s biggest concentrations of researchers in the fields of environment, health and plant science.
The number of presenters and the amount of information stuffed into an action-packed few days at times felt overwhelming, even for two dedicated omega-3 enthusiasts like us. But one important message did hit home: The omega-3 index could be a helpful indicator of various health risks, and we should all be paying closer attention to this measurement.
Omega AD study, Irving et al. (54) Double-blind, placebo-controlled, randomized 1741 DHA (1.7 g/d) and EPA (0.6 g/d) for 6 mo, then for all subjects (supplementation group and placebo group) Supplementation was associated with positive weight gain and appetite in supplementation group at 6 mo, but not in the placebo group, and for both groups at 12 mo
Omega-3 Power is sourced from anchovies, sardines, and mackerel. These fish roam mostly in the mid-level of the ocean and have relatively short-lived lifespans. Because of this, they tend to accumulate fewer toxins. In addition, the fish oil in Omega-3 Power is put through the most thorough purification processes available. It includes screening for more than 250 potentially toxic chemicals, and at the same time, eliminates the “burpy” effects of crude fish oils. The result is the highest quality omega-3 supplement available on the market today.
Hamazaki, K., Syafruddin, D., Tunru, I. S., Azwir, M. F., Asih, P. B., Sawazaki, S., and Hamazaki, T. The effects of docosahexaenoic acid-rich fish oil on behavior, school attendance rate and malaria infection in school children--a double-blind, randomized, placebo-controlled trial in Lampung, Indonesia. Asia Pac.J Clin Nutr 2008;17(2):258-263. View abstract.
Evidence linking fish oil and cancer has been all over the map. Some research suggests diets high in fatty fish or fish oil supplements might reduce the risk of certain cancers, including prostate cancer. Other research shows just the opposite, a  link between eating a lot of oily fish or taking potent fish oil supplements and a 43% increased risk for prostate cancer overall, and a 71% increased risk for aggressive prostate cancer.
Moertl, D., Hammer, A., Steiner, S., Hutuleac, R., Vonbank, K., and Berger, R. Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study. Am.Heart J. 2011;161(5):915-919. View abstract.
Abnormal rapid heart rhythms (ventricular arrhythmias). Population research suggests that eating a lot of fish has no effect on the risk for abnormal rapid heart rhythms. Clinical research is inconsistent. Some research shows that taking fish oil daily does not affect the risk for abnormal heart rhythms. But other research shows that taking fish oil for 11 months delays the development of the condition. However, overall, taking fish oil does not seem to reduce the risk of death in people with abnormal rapid heart rhythms.