Ample evidence from animal studies supports regular supplementation with omega-3 oils as a means of lowering long-term cardiovascular risk. This may be due to omega-3 fatty acids’ effects on reducing inflammation, lowering triglycerides, reducing blood pressure, improving endothelial function, inducing new blood vessel formation after heart attack or stroke, and favorable modification of obesity-related inflammatory molecules.35-39
Fish oil contains two very important omega-3 PUFAs. I’m talking about docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). DHA and EPA are sometimes called the marine omega-3s because they mainly come from fish. Some of the best fish to eat to obtain fish oil from in your diet include wild-caught salmon, herring, white fish, sardines and anchovies.
There have been numerous clinical trials looking mainly at death, stroke, and cardiac outcomes related to omega 3 consumption, either in food or in supplements. Now the Cochrane Library has published the largest systematic review of these studies to date. Unfortunately, the review shows little benefit from consuming omega 3 fatty acid. This is a fairly extensive review with good statistical power:
Omega AD study, Freund-Levi et al. (47) Double-blind, placebo-controlled, randomized 1741 DHA (1.7 g/d) and EPA (0.6 g/d) Decline in cognitive function did not differ between supplemented group and placebo group at 6 mo. However, patients with very mild cognitive dysfunction (n = 32, MMSE score >27) in the EPA+DHA-supplemented group had a significant reduction in MMSE score decline rate at 6 mo

Omega-3 fatty acids have been shown to increase platelet responsiveness to subtherapeutic anticoagulation therapies, including aspirin. Recently, it was noted that patient response to aspirin for anticoagulation therapy is widely variable (45), and, thus, the number of patients with a low response to aspirin or aspirin resistance is estimated to range from <1% to 45%, depending on many variables. However, in patients with stable coronary artery disease taking low-dose aspirin, EPA+DHA supplementation has been proven to be as effective as aspirin dose escalation to 325 mg/d for anticoagulation benefits (45). The antiplatelet drug clopidogrel has also been associated with hyporesponsiveness in some patients. This could be attributed to poor patient compliance, differences in genes and platelet reactivity, variability of drug metabolism, and drug interactions. More importantly, in 1 study, patients receiving standard dual antiplatelet therapy (aspirin 75 mg/d and clopidogrel 600-mg loading dose followed by 75 mg/d) were assigned to either EPA+DHA supplementation or placebo. After 1 mo of treatment, the P2Y12 receptor reactivity index (an indicator of clopidogrel resistance) was significantly lower, by 22%, for patients taking EPA+DHA compared with patients taking placebo (P = 0.020) (46).
An animal study involving the omega-3 ETA discovered that subjects experienced a drop in overall inflammation similar to that caused by NSAIDs (non-steroidal anti-inflammatory drugs), but without the dangerous gastrointestinal side effects. The study authors also pointed out that eicosapentaenoic acid seems to be even more potent than the conventional omega-3s found in fish oil supplements (EPA/DHA). (56)

Khandelwal, S., Demonty, I., Jeemon, P., Lakshmy, R., Mukherjee, R., Gupta, R., Snehi, U., Niveditha, D., Singh, Y., van der Knaap, H. C., Passi, S. J., Prabhakaran, D., and Reddy, K. S. Independent and interactive effects of plant sterols and fish oil n-3 long-chain polyunsaturated fatty acids on the plasma lipid profile of mildly hyperlipidaemic Indian adults. Br.J.Nutr. 2009;102(5):722-732. View abstract.


The two key omega-3 fatty acids are docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Fatty fish like salmon, mackerel, and sardines are rich in these omega-3s. Some plants are rich in another type of omega-3 fatty acid, alpha-linolenic acid, which the body can convert to DHA and EPA. Good sources of these are flaxseeds, chia seeds, walnuts, pumpkin seeds, and canola oil.
Belalcazar, L. M., Reboussin, D. M., Haffner, S. M., Reeves, R. S., Schwenke, D. C., Hoogeveen, R. C., Pi-Sunyer, F. X., and Ballantyne, C. M. Marine omega-3 fatty acid intake: associations with cardiometabolic risk and response to weight loss intervention in the Look AHEAD (Action for Health in Diabetes) study. Diabetes Care 2010;33(1):197-199. View abstract.
There is some evidence that omega−3 fatty acids are related to mental health,[47] including that they may tentatively be useful as an add-on for the treatment of depression associated with bipolar disorder.[48] Significant benefits due to EPA supplementation were only seen, however, when treating depressive symptoms and not manic symptoms suggesting a link between omega−3 and depressive mood.[48] There is also preliminary evidence that EPA supplementation is helpful in cases of depression.[49] The link between omega−3 and depression has been attributed to the fact that many of the products of the omega−3 synthesis pathway play key roles in regulating inflammation (such as prostaglandin E3) which have been linked to depression.[50] This link to inflammation regulation has been supported in both in vitro[51] and in vivo studies as well as in meta-analysis studies.[33] The exact mechanism in which omega−3 acts upon the inflammatory system is still controversial as it was commonly believed to have anti-inflammatory effects.[52]
Consumers of oily fish should be aware of the potential presence of heavy metals and fat-soluble pollutants like PCBs and dioxins, which are known to accumulate up the food chain. After extensive review, researchers from Harvard's School of Public Health in the Journal of the American Medical Association (2006) reported that the benefits of fish intake generally far outweigh the potential risks.
Among the 16 studies comparing the effect of omega-3 PUFA treatment with that of the placebo,33,34,36,47-49,51-53,55-61 the main results revealed a significantly greater association of treatment with reduced anxiety symptoms in patients receiving omega-3 PUFA treatment than in those not receiving it (k, 16; Hedges g, 0.372; 95% CI, 0.032-0.712; P = .03; eFigure 3 in the Supplement). The meta-analysis of the subgroup focusing on non–placebo-controlled trials also showed a significantly greater association of treatment with reduced anxiety symptoms in patients receiving omega-3 PUFA treatment than in those not receiving it (k, 3; Hedges g, 0.399; 95% CI, 0.154-0.643; P = .001).35,50,54
Our scientists also focused on each oil’s freshness, measured by the degree of oxidation. Oxidation occurs in two phases: primary (measured by peroxide values) and secondary (measured by p-anisidine values). Total oxidation is formalized into a quantitative score, TOTOX. While Labdoor conducted tests of both primary and secondary oxidation, advances in rancidity testing confirm that added flavors–particularly added citrus flavors prevalent in liquid formulations–skew p-anisidine values and result in false positive outcomes. Until analytical techniques measuring p-anisidine values that are able to account for added flavors are established, Labdoor will use peroxide values as the primary indicator of freshness. All products recorded measurable levels of oxidation, with the average product recording a peroxide values of 3.7 meq/kg. 14/51 products recorded peroxide levels at or above the upper limit (10 meq/kg).
The Japanese notably have the lowest levels of coronary heart disease mortality and atherosclerosis among developed nations — a phenomena that has been largely subscribed to diet. However, even within Japan, a 10-year study of over 41,000 people found that higher intakes of omega-3s were associated with lower risks of nonfatal coronary events (8). A more recent study also found that Japanese with higher omega-3 index levels (10%) had a lower risk of fatal coronary heart disease than those with a lower omega-3 index levels (8%) (9). The study begs the question of whether maybe even the Japanese have room to improve their omega-3 intake and whether 8% should be considered the lower limit of a desirable range.

While fish oil has plenty of beneficial qualities, there is a lot of hype around its possible applications, and not all of them are accurate, so be wary when reading literature on this useful oil. Fish oil manufacturers have attempted to market it as a remedy for almost anything. We suggest that readers educate themselves fully before making an informed decision, rather than getting affected by both negative and positive propaganda about the beneficial applications of fish oil.
Omega-3 FA most likely reduce serum triglyceride levels by modulating very-low-density lipoprotein (VLDL) and chylomicron metabolism. There is a consistent finding in the literature that the end effect of fish oil is decreased hepatic secretion of VLDL17—the major endogenous source of triglycerides. This effect occurs most likely through multiple mechanisms, including: (1) decreased synthesis of triglycerides because these omega-3 FA may not be the preferred substrates of the enzyme diacylglycerol O-acyltransferase,18 or they may interact with nuclear transcription factors that control lipogenesis19; cellular metabolism consequently shifts toward a decrease in triglyceride synthesis and an increase in FA oxidation; and (2) the promotion of apolipoprotein B degradation in the liver through the stimulation of an autophagic process.20 This means that fewer VLDL particles can be assembled and secreted. Fish oil may also accelerate VLDL and chylomicron clearance21 by inducing lipoprotein lipase activity.22
Weak bones (osteoporosis). Research suggests that taking fish oil alone or together with calcium and evening primrose oil slows the rate of bone loss and increases bone density at the thigh bone (femur) and spine in elderly people with osteoporosis. But taking fish oil does not slow bone loss in older people with osteoarthritis in the knee but without weak bones.
×