In another study, Australian researchers looked at whether giving infants added omega-3 fatty acids might improve health,4 including reducing their risk for heart disease. They gave 420 infants either an omega 3 supplement or olive oil from birth through six months, then revisited that at age 5 years to see if either group appeared healthier from a heart risk point of view.
Humans are unable to place double bonds beyond position 9 on long chain polyunsaturated fatty acids (FA), making the omega-3 FA synthesized in plants and in marine microalgae essential elements to the human diet.1 Fish contain high levels of 2 omega-3 FA, eicosapentaenoic acid (EPA; C20:5 n-3), and docosahexaenoic acid [DHA]; C22:6 n-3)2,3 (Fig. 1). Many claims about the role of these omega-3 FA have been made in the prevention and treatment of cardiovascular disease. For instance, fish oil is seen as having a therapeutic role in coronary artery disease (CAD), heart failure, fatal and nonfatal arrhythmias, as well as offering an alternative or adjunct to the standard therapy for hypertriglyceridemia and diabetes. This review will highlight the potential mechanisms of fish oil on cardiovascular disease and provide an update of clinical trial results. The established uses in the treatment of hypertriglyceridemia and sources of omega-3 FA—both dietary and drug therapy—will be iterated, along with its potential application in combination with standard hypolipidemic agents. Finally, the limitations of current data will be addressed, as well as suggested recommendations for clinical use.
A certain kidney disease called IgA nephropathy. Some research shows that long-term but not short-term use of fish oil can slow the loss of kidney function in high-risk patients with IgA nephropathy. Fish oil might have greater effects when taken at higher doses. Also, it might be most effective in people with IgA nephropathy who have higher levels of protein in the urine.

Egert, S., Somoza, V., Kannenberg, F., Fobker, M., Krome, K., Erbersdobler, H. F., and Wahrburg, U. Influence of three rapeseed oil-rich diets, fortified with alpha-linolenic acid, eicosapentaenoic acid or docosahexaenoic acid on the composition and oxidizability of low-density lipoproteins: results of a controlled study in healthy volunteers. Eur J Clin Nutr 2007;61(3):314-325. View abstract.


Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential nutrients that have potential preventive and therapeutic effects on psychiatric disorders, such as anxiety and depression,7-15 as well as comorbid depression and anxiety in physically ill patients,16-19 patients with coronary heart disease,20,21 and pregnant women.22,23 Preclinical data support the effectiveness of omega-3 PUFAs as treatment for anxiety disorders. Song et al24,25 found that an EPA-rich diet could reduce the development of anxiety-like behaviors in rats as well as normalize dopamine levels in the ventral striatum. In addition, Yamada et al26 showed that a high dietary omega-3 to omega-6 PUFA ratio reduced contextual fear behaviors in mice and that these effects were abolished by a cannabinoid CB1 receptor antagonist.

It can be challenging to get the appropriate intake of EPA and DHA through diet alone, even though EPA and DHA are produced by water plants such as algae and are prevalent in marine animals. A shorter chain omega-3 fatty acid, α-linolenic acid (ALA),6 is a prominent component of our diet as it is found in many land plants that are commonly eaten, but it does not provide the health benefits seen with EPA and DHA. Although it is possible for the body to convert ALA to EPA and DHA by enlongase and desaturase enzymes, research suggests that only a small amount can be synthesized in the body from this process (8). For example, 1 study suggested that only ∼2 to 10% of ALA is converted to EPA or DHA (9), and other studies found even less: Goyens et al. (10) found an ALA conversion of ∼7% for EPA, but only 0.013% for DHA; Hussein et al. (11) found an ALA conversion of only 0.3% for EPA and <0.01% for DHA.
ADD ADHD Ageing Allergies Alzheimer's Arthritis Autism baby Behaviour Brain function Cancer CFS Chronic Fatigue Concentration Dementia Depression Diabetes Digestion Dyslexia Dyspraxia Energy EPA Fertility Fibromyalgia General Health Good fats Healthy omega-3 Heart health Hormones IBS Immune System Inflammation Joints M.E. Mental health Mood Omega-3 Pregnancy Psoriasis Skin Sleep Stress Vegetarian nutrients Vegetarian Omega-3 Weight management

Preventing re-blockage of blood vessels after angioplasty, a procedure to open a closed blood vessel. Research suggests that fish oil decreases the rate of blood vessel re-blockage by up to 45% when given for at least 3 weeks before an angioplasty and continued for one month thereafter. But, when given for 2 weeks or less before angioplasty, it doesn't seem to have any effect.
×