There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.
Birch, E. E., Carlson, S. E., Hoffman, D. R., Fitzgerald-Gustafson, K. M., Fu, V. L., Drover, J. R., Castaneda, Y. S., Minns, L., Wheaton, D. K., Mundy, D., Marunycz, J., and Diersen-Schade, D. A. The DIAMOND (DHA Intake And Measurement Of Neural Development) Study: a double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am J Clin Nutr 2010;91(4):848-859. View abstract.

Many studies show that eating fatty fish and other types of seafood as part of a healthy eating pattern helps keep your heart healthy and helps protect you from many heart problems. Getting more EPA or DHA from foods lowers triglyceride levels, for example. Omega-3 dietary supplements can also help lower triglyceride levels, but it is not clear whether omega-3 supplements protect you from most heart problems.
Augood, C., Chakravarthy, U., Young, I., Vioque, J., de Jong, P. T., Bentham, G., Rahu, M., Seland, J., Soubrane, G., Tomazzoli, L., Topouzis, F., Vingerling, J. R., and Fletcher, A. E. Oily fish consumption, dietary docosahexaenoic acid and eicosapentaenoic acid intakes, and associations with neovascular age-related macular degeneration. Am J Clin Nutr 2008;88(2):398-406. View abstract.
"All these diseases have a common genesis in inflammation," says Joseph C. Maroon, MD, professor and vice chairman of the department of neurological surgery at the University of Pittsburgh School of Medicine. Co-author of Fish Oil: The Natural Anti-Inflammatory, Maroon says that in large enough amountsomega-3's reduce the inflammatory process that leads to many chronic conditions.

Hanwell, H. E., Kay, C. D., Lampe, J. W., Holub, B. J., and Duncan, A. M. Acute fish oil and soy isoflavone supplementation increase postprandial serum (n-3) polyunsaturated fatty acids and isoflavones but do not affect triacylglycerols or biomarkers of oxidative stress in overweight and obese hypertriglyceridemic men. J Nutr 2009;139(6):1128-1134. View abstract.
Heavy metal poisoning by the body's accumulation of traces of heavy metals, in particular mercury, lead, nickel, arsenic, and cadmium, is a possible risk from consuming fish oil supplements.[medical citation needed] Also, other contaminants (PCBs, furans, dioxins, and PBDEs) might be found, especially in less-refined fish oil supplements.[citation needed] However, heavy metal toxicity from consuming fish oil supplements is highly unlikely, because heavy metals selectively bind with protein in the fish flesh rather than accumulate in the oil. An independent test in 2005 of 44 fish oils on the US market found all of the products passed safety standards for potential contaminants.[107][unreliable source?]

DHA is vital for early brain development and maintenance, while EPA seems to be closely related to behavior and mood. Together, both molecules provide critical neuroprotective benefits.11 These neuroprotective effects are important for the prevention of age-related brain shrinkage (cortical atrophy). Aging adults with brain shrinkage often experience memory loss, cognitive decline, and an increase in depression.12-14


Guallar, E., Aro, A., Jimenez, F. J., Martin-Moreno, J. M., Salminen, I., van't Veer, P., Kardinaal, A. F., Gomez-Aracena, J., Martin, B. C., Kohlmeier, L., Kark, J. D., Mazaev, V. P., Ringstad, J., Guillen, J., Riemersma, R. A., Huttunen, J. K., Thamm, M., and Kok, F. J. Omega-3 fatty acids in adipose tissue and risk of myocardial infarction: the EURAMIC study. Arterioscler.Thromb.Vasc.Biol 1999;19(4):1111-1118. View abstract.
An 18-month study was published in 2014 that evaluated how borage seed oil — rich in GLA — and fish oil rich fared against each other in treating patients with rheumatoid arthritis. It was discovered that all three groups (one taking fish oil, one taking borage oil and one taking a combination of the two) “exhibited significant reductions” in disease activity, and no therapy outperformed the others. For all three, “meaningful clinical responses” were the same after nine months. (11)
Krauss-Etschmann et al. (26) Double-blind, placebo-controlled, randomized 311 DHA+EPA daily with either fish oil with DHA (0.5 g) and EPA (0.15 g) or with methyltetrahydrofolic acid (400 μg), both, or placebo, from gestation week 22 Fish-oil supplementation was associated with decreased levels of maternal inflammatory/TH1 cytokines and a decrease of fetal Th2-related cytokines

The bottom line of all that is that there was no clear health benefit from consuming omega-3 fatty acids in food or supplements. There was a suggestion of a possible benefit from LCn3 on cardiac events, but this did not hold up when they took into consideration the quality of the evidence. The better trials, with less risk of bias, tended to be negative.


Because of the preliminary state of knowledge on the effects of omega-3 PUFA treatment on anxiety, we decided to include as many studies as possible and not to set further limitations on specific characteristics, such as length of study, diagnosis, omega-3 PUFA dosage, omega-3 PUFA preparation (EPA to DHA ratio), rated anxiety coding scale, or type of control. Therefore, we chose to make the inclusion criteria as broad as possible to avoid missing any potentially eligible studies. The inclusion criteria included clinical trials in humans (randomized or nonrandomized), studies investigating the effects of omega-3 PUFA treatment on anxiety symptoms, and formal published articles in peer-reviewed journals. The clinical trials could be placebo controlled or non–placebo controlled. The target participants could include healthy volunteers, patients with psychiatric illness, and patients with physical illnesses other than psychiatric illnesses. The exclusion criteria included case reports or series, animal studies or review articles, and studies not investigating the effects of omega-3 PUFA treatment on anxiety symptoms. We did not set any language limitation to increase the number of eligible articles. Figure 1 shows the literature search and screening protocol.
Corresponding Author: Yutaka J. Matsuoka, MD, PhD, Division of Health Care Research, Center for Public Health Sciences, National Cancer Center Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan (yumatsuo@ncc.go.jp); Kuan-Pin Su, MD, PhD, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City, Taiwan 404 (cobolsu@gmail.com).
For several years now, the fish oil and Alzheimer’s disease connection has been studied with consistent results. The essential fatty acids vital for brain function that are found in fish oil can not only slow cognitive decline, but can help prevent brain atrophy in older adults. A study published in the FASEB Journal looked at the health effects of four- to 17-month dietary supplementation with omega-3 fatty acids and antioxidants. The findings once again confirm the potential for fish oil to be used as a weapon to fend off the onset of cognitive decline and Alzheimer’s disease. (8)

Ample evidence from animal studies supports regular supplementation with omega-3 oils as a means of lowering long-term cardiovascular risk. This may be due to omega-3 fatty acids’ effects on reducing inflammation, lowering triglycerides, reducing blood pressure, improving endothelial function, inducing new blood vessel formation after heart attack or stroke, and favorable modification of obesity-related inflammatory molecules.35-39
There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.

Dry eye. Higher intake of fish oil from the diet has been linked to a lower risk of dry eye in women. But the effects of fish oil in people with dry eye are inconsistent. Some research shows that fish oil reduces dry eye symptoms such as pain, blurred vision, and sensitivity. But fish oil doesn’t seem to improve other signs and symptoms of dry eye such as tear production and damage to the surface of the eye. Taking fish oil also doesn’t improve signs and symptoms of dry eye when used with other dry eye treatments.
×