^ Jump up to: a b Casula M, Soranna D, Catapano AL, Corrao G (August 2013). "Long-term effect of high dose omega-3 fatty acid supplementation for secondary prevention of cardiovascular outcomes: A meta-analysis of randomized, placebo controlled trials [corrected]". Atherosclerosis. Supplements. 14 (2): 243–51. doi:10.1016/S1567-5688(13)70005-9. PMID 23958480.
De Truchis, P., Kirstetter, M., Perier, A., Meunier, C., Zucman, D., Force, G., Doll, J., Katlama, C., Rozenbaum, W., Masson, H., Gardette, J., and Melchior, J. C. Reduction in triglyceride level with N-3 polyunsaturated fatty acids in HIV-infected patients taking potent antiretroviral therapy: a randomized prospective study. J.Acquir.Immune.Defic.Syndr. 3-1-2007;44(3):278-285. View abstract.
When taking fish oil, more is not always better. Remember that you want it to stay in a balanced ratio with omega-6 fats. For most people, I recommend a 1,000-milligram dose of fish oil daily as a good amount and the most scientifically studied dosage. I highly recommend not taking more than that unless directed to under the supervision of a doctor.

The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication, or have a medical condition.


Bergmann, R. L., Haschke-Becher, E., Klassen-Wigger, P., Bergmann, K. E., Richter, R., Dudenhausen, J. W., Grathwohl, D., and Haschke, F. Supplementation with 200 mg/day docosahexaenoic acid from mid-pregnancy through lactation improves the docosahexaenoic acid status of mothers with a habitually low fish intake and of their infants. Ann Nutr Metab 2008;52(2):157-166. View abstract.
Fish oil has the ability to treat Attention Deficit Hyperactivity Disorder (ADHD) due to its high concentration of fatty acids. For children suffering from hyperactivity, dyslexia, dyspraxia, inability to complete tasks, emotional instability, wavering attitude, poor coordination, short attention span, short-term memory weakness, low concentration, tendency to interrupt others, recklessness, hastiness, impetuosity, impulsiveness, low IQ, or learning disorders, fish oil is a proven remedy. Research conducted at the University of South Australia and CSIRO has shown that when children suffering from ADHD were given doses of fish oil and evening primrose capsules for 15 weeks, they showed significant improvements in their behavior. Since, human brain consists of about 60% fats, especially essential fatty acids such as omega-3 and omega-6, it helps to improve the functions of the brain.
Fish Oil capsules contain omega-3 polyunsaturated fatty acids. Omega-3 polyunsaturated fatty acids are found in oils from certain types of fish, vegetables, and other plant sources. These fatty acids are not made by the body and must be consumed in the diet. Omega-3 polyunsaturated fatty acids work by lowering the body's production of triglycerides. High levels of triglycerides can lead to coronary artery disease, heart disease, and stroke.

Peroxides can be produced when fish oil spoils. A study commissioned by the government of Norway concluded there would be some health concern related to the regular consumption of oxidized (rancid) fish/marine oils, particularly in regards to the gastrointestinal tract, but there is not enough data to determine the risk. The amount of spoilage and contamination in a supplement depends on the raw materials and processes of extraction, refining, concentration, encapsulation, storage and transportation.[51] ConsumerLab.com reports in its review that it found spoilage in test reports it ordered on some fish oil supplement products.[52]
Omega 3 fatty acids—found in supplements and naturally in some foods like certain fish, and nuts and seeds—have long been touted for their health benefits, especially heart health. Yet, a lot is still unknown, including whether it's better to get your omega 3 fats from pills or in food—and the debate continues regarding how much they may actually help you avoid heart disease.
Humans are unable to place double bonds beyond position 9 on long chain polyunsaturated fatty acids (FA), making the omega-3 FA synthesized in plants and in marine microalgae essential elements to the human diet.1 Fish contain high levels of 2 omega-3 FA, eicosapentaenoic acid (EPA; C20:5 n-3), and docosahexaenoic acid [DHA]; C22:6 n-3)2,3 (Fig. 1). Many claims about the role of these omega-3 FA have been made in the prevention and treatment of cardiovascular disease. For instance, fish oil is seen as having a therapeutic role in coronary artery disease (CAD), heart failure, fatal and nonfatal arrhythmias, as well as offering an alternative or adjunct to the standard therapy for hypertriglyceridemia and diabetes. This review will highlight the potential mechanisms of fish oil on cardiovascular disease and provide an update of clinical trial results. The established uses in the treatment of hypertriglyceridemia and sources of omega-3 FA—both dietary and drug therapy—will be iterated, along with its potential application in combination with standard hypolipidemic agents. Finally, the limitations of current data will be addressed, as well as suggested recommendations for clinical use.
The various enzymes (COX and LOX) that make inflammatory eicosanoids can accommodate both AA and EPA, but again due to the greater spatial size of DHA, these enzymes will have difficulty in converting DHA into eicosanoids. This makes DHA a poor substrate for these key inflammatory enzymes. Thus DHA again has little effect on cellular inflammation whereas EPA can have a powerful impact.
Chemical structure of alpha-linolenic acid (ALA), an essential omega−3 fatty acid, (18:3Δ9c,12c,15c, which means a chain of 18 carbons with 3 double bonds on carbons numbered 9, 12, and 15). Although chemists count from the carbonyl carbon (blue numbering), biologists count from the n (ω) carbon (red numbering). Note that, from the n end (diagram right), the first double bond appears as the third carbon-carbon bond (line segment), hence the name "n-3". This is explained by the fact that the n end is almost never changed during physiological transformations in the human body, as it is more energy-stable, and other compounds can be synthesized from the other carbonyl end, for example in glycerides, or from double bonds in the middle of the chain.
Whilst EPA and DHA are both considered to be important regulators of immunity, platelet aggregation and inflammation, their health-influencing by-products arise from very different pathways and their effects in the body differ. DHA is the most abundant omega-3 fatty acid in cell membranes, present in all organs and most abundant in the brain and retina, playing an important structural role. EPA is present structurally only in minute quantities, always being utilised and under constant demand to be replaced. Whilst DHA provides mainly a structural role, it is becoming evident that EPA may be the dominant functional fatty acid out of the two in many areas of health and especially in inflammatory conditions.
Could you be deficient in omega-3s? The University of Maryland Medical Center says that the symptoms “include fatigue, poor memory, dry skin, heart problems, mood swings or depression, and poor circulation.” They also warn against a poor omega-3 to omega-6 ratio, cautioning readers that it may be “associated with worsening inflammation over time.” (6)
Fish oil’s most potent effect on atherosclerosis may be related to its potential to alter plaque inflammation, thereby stabilizing vulnerable plaques. In recent years there has been a growing body of evidence that is shifting the paradigm of how inflammation is contained and dissipated.4 In this new model, inflammation resolution is an active process mediated by lipid-derived compounds. Newly discovered families of chemical mediators, resolvins, and protectins5,6 are directly involved in blocking neutrophil migration, infiltration, and recruitment, as well as in blocking T-cell migration and promoting T-cell apoptosis.7–12 In addition, protectins can reduce tumor necrosis factor and interferon secretion.13 Interestingly, both protectins and resolvins are strictly derived from omega-3 FA. EPA is the substrate of the resolvins family and DHA can be converted to both resolvins and protectins.7 It may be that the effects of fish oil on inflammatory mediators underlie the positive findings demonstrated in several trials assessing fish oil and plaque stability.14–16
A certain kidney disease called IgA nephropathy. Some research shows that long-term but not short-term use of fish oil can slow the loss of kidney function in high-risk patients with IgA nephropathy. Fish oil might have greater effects when taken at higher doses. Also, it might be most effective in people with IgA nephropathy who have higher levels of protein in the urine.
×