To improve the health of your heart, brain, skin, hair, body and much, much more, consider adding fish oil to your daily supplement regime or consume wild-caught fish daily. If you’re adverse to fish oil pills, make sure to get at least two servings of fatty fish each week to fulfill your omega-3 needs and provide your body with fish oil benefits. This is a recommendation also encouraged by the American Heart Association. (38)
AAKG β-hydroxy β-methylbutyrate Carnitine Chondroitin sulfate Cod liver oil Copper gluconate Creatine/Creatine supplements Dietary fiber Echinacea Elemental calcium Ephedra Fish oil Folic acid Ginseng Glucosamine Glutamine Grape seed extract Guarana Iron supplements Japanese Honeysuckle Krill oil Lingzhi Linseed oil Lipoic acid Milk thistle Melatonin Red yeast rice Royal jelly Saw palmetto Spirulina St John's wort Taurine Wheatgrass Wolfberry Yohimbine Zinc gluconate
Oe, H., Hozumi, T., Murata, E., Matsuura, H., Negishi, K., Matsumura, Y., Iwata, S., Ogawa, K., Sugioka, K., Takemoto, Y., Shimada, K., Yoshiyama, M., Ishikura, Y., Kiso, Y., and Yoshikawa, J. Arachidonic acid and docosahexaenoic acid supplementation increases coronary flow velocity reserve in Japanese elderly individuals. Heart 2008;94(3):316-321. View abstract.
Fish oil is oil derived from the tissues of oily fish. Fish oils contain the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), precursors of certain eicosanoids that are known to reduce inflammation in the body,[1][2] and have other health benefits, such as treating hypertriglyceridemia, although claims of preventing heart attacks or strokes have not been supported.[3][4][5][6] Fish oil and omega-3 fatty acids have been studied in a wide variety of other conditions, such as clinical depression,[7][8] anxiety,[9][10][11] cancer, and macular degeneration, yet benefits in these conditions have not been verified.[12]
This article had several limitations and the findings need to be considered with caution. First, our participant population is too heterogeneous because of our broad inclusion criteria, which might be true if considering current Diagnostic and Statistical Manual of Mental Disorders or International Classification of Diseases diagnostic systems. However, the novel Research Domain Criteria consider anxiety to be one of the major domains in Negative Valence Systems. Trials should be conducted in populations in which anxiety is the main symptom irrespective of the presence or absence of diagnosis of anxiety disorder. Second, because of the limited number of recruited studies and their modest sample sizes, the results should not be extrapolated without careful consideration. Third, the significant heterogeneity among the included studies (Cochran Q, 178.820; df, 18; I2, 89.934%; P < .001) with potential influence by some outlier studies, such as the studies by Sohrabi et al56 and Yehuda et al,61 would be another major concern. Therefore, clinicians should pay attention to this aspect when applying the results of the current meta-analysis to clinical practice, particularly when considering the subgroups of these 2 studies (ie, subgroups with specific clinical diagnoses, with <2000 mg/d, with EPA <60%, and with placebo-controlled trials).
“This idea has since been pretty discredited; we really don’t know if the Eskimos got heart disease or not,” said Malden C. Nesheim, emeritus professor of nutrition at Cornell University, who chaired an Institute of Medicine committee assessing the risks and benefits of seafood in the early 2000s. “I’ve been an omega-3 skeptic since doing this study.”

Our scientists also focused on each oil’s freshness, measured by the degree of oxidation. Oxidation occurs in two phases: primary (measured by peroxide values) and secondary (measured by p-anisidine values). Total oxidation is formalized into a quantitative score, TOTOX. While Labdoor conducted tests of both primary and secondary oxidation, advances in rancidity testing confirm that added flavors–particularly added citrus flavors prevalent in liquid formulations–skew p-anisidine values and result in false positive outcomes. Until analytical techniques measuring p-anisidine values that are able to account for added flavors are established, Labdoor will use peroxide values as the primary indicator of freshness. All products recorded measurable levels of oxidation, with the average product recording a peroxide values of 3.7 meq/kg. 14/51 products recorded peroxide levels at or above the upper limit (10 meq/kg).
In 1964 it was discovered that enzymes found in sheep tissues convert omega−6 arachidonic acid into the inflammatory agent called prostaglandin E2[71] which both causes the sensation of pain and expedites healing and immune response in traumatized and infected tissues.[72] By 1979 more of what are now known as eicosanoids were discovered: thromboxanes, prostacyclins, and the leukotrienes.[72] The eicosanoids, which have important biological functions, typically have a short active lifetime in the body, starting with synthesis from fatty acids and ending with metabolism by enzymes. If the rate of synthesis exceeds the rate of metabolism, the excess eicosanoids may, however, have deleterious effects.[72] Researchers found that certain omega−3 fatty acids are also converted into eicosanoids, but at a much slower rate. Eicosanoids made from omega−3 fatty acids are often referred to as anti-inflammatory, but in fact they are just less inflammatory than those made from omega−6 fats. If both omega−3 and omega−6 fatty acids are present, they will "compete" to be transformed,[72] so the ratio of long-chain omega−3:omega−6 fatty acids directly affects the type of eicosanoids that are produced.[72]
It helps maintain a good luster of the hair because omega-3 has growth stimulating properties since it provides nourishment to the follicles. It aids in the development of hair and in preventing hair loss. A good supply of protein is also necessary for hair growth, and since most fish varieties are rich in protein, eating fish helps to keep hair healthy.

There is also evidence that mothers who use EPA and DHA supplementation during pregnancy and breastfeeding may protect their children against allergies. This may be due to the fact that fish-oil supplementation has been associated with decreased levels of body cells associated with inflammation and immune response (26). In a study about food allergy and IgE-associated eczema, the period prevalence of food allergy was lower in the maternal EPA+DHA supplementation group compared to placebo (P < 0.05), and the incidence of IgE-associated eczema was also lower in the maternal EPA+DHA supplementation group compared to placebo (P < 0.05) (27).


A tremendous body of research has been conducted on these important nutrients since it was first discovered in the 1950s that fish oil offered many health benefits and that these benefits were attributable to a type of polyunsaturated fat called omega-3. Despite the volumes of research on omega-3s, it is only in recent years (within the last 15 years or so) that the actions of EPA and DHA have come to be understood individually. Researchers now often investigate the actions of EPA and DHA individually rather than together, no longer simply under the generic label omega-3 as they are widely referred to.
Omega−3 fatty acids, also called ω−3 fatty acids or n−3 fatty acids,[1] are polyunsaturated fatty acids (PUFAs).[2][3] The fatty acids have two ends, the carboxylic acid (-COOH) end, which is considered the beginning of the chain, thus "alpha", and the methyl (-CH3) end, which is considered the "tail" of the chain, thus "omega". One way in which a fatty acid is named is determined by the location of the first double bond, counted from the tail, that is, the omega (ω-) or the n- end. Thus, in omega-3 fatty acids the first double bond is between the third and fourth carbon atoms from the tail end. However, the standard (IUPAC) chemical nomenclature system starts from the carboxyl end.

The evidence that fish oil consumption should be used for primary prevention of CAD is based on observational studies. The only randomized trial for primary prevention, the JELIS trial, showed a moderate relative risk reduction and was conducted in a very specific group. Nevertheless, to date, there has been no strong signal suggesting any serious adverse effects of having high DHA and EPA oils in the diet. We agree with the national guidelines that one should consume moderate amounts of fish oil— either in supplement or through the dietary intake of fatty fish with low mercury levels.

Foods such as meat, eggs, fish and nuts contain omega-3 and omega-6 fatty acids, which the body converts into endocannabinoids – cannabinoids that the body produces naturally, said Aditi Das, a University of Illinois professor of comparative biosciences and biochemistry, who led the study. Cannabinoids in marijuana and endocannabinoids produced in the body can support the body’s immune system and therefore are attractive targets for the development of anti-inflammatory therapeutics, she said.
Omega−3 fatty acids are important for normal metabolism.[8] Mammals are unable to synthesize omega−3 fatty acids, but can obtain the shorter-chain omega−3 fatty acid ALA (18 carbons and 3 double bonds) through diet and use it to form the more important long-chain omega−3 fatty acids, EPA (20 carbons and 5 double bonds) and then from EPA, the most crucial, DHA (22 carbons and 6 double bonds).[8] The ability to make the longer-chain omega−3 fatty acids from ALA may be impaired in aging.[9][10] In foods exposed to air, unsaturated fatty acids are vulnerable to oxidation and rancidity.[11]

EPA and DHA are vital nutrients and may be taken to maintain healthy function of the following: brain and retina: DHA is a building block of tissue in the brain and retina of the eye. It helps with forming neural transmitters, such as phosphatidylserine, which is important for brain function. DHA is found in the retina of the eye and taking DHA may be necessary for maintaining healthy levels of DHA for normal eye function.
The information you share, including that which might otherwise be Protected Health Information, to this site is by design open to the public and is not a private, secure service. You should think carefully before disclosing any personal information in any public forum. What you have written may be seen, disclosed to, or collected by third parties and may be used by others in ways we are unable to control or predict, including to contact you or otherwise be used for unauthorized or unlawful purposes. As with any public forum on any site, this information may also appear in third-party search engines like Google, MSN, Yahoo, etc. Your use of this site is governed by Harvard University and its affiliates Terms of Use located at www.health.harvard.edu/privacy-policy and may be amended from time to time.
People with metabolic syndrome (the combination of central obesity, high blood pressure, disturbed lipid profile, and impaired glucose tolerance) are at increased risk of death from cardiovascular disease, diabetes, cancer, and other apparently “age-related” disorders. Because metabolic syndrome is closely associated with chronic low-grade inflammation, the powerful anti-inflammatory effects of omega-3 fats are especially important as a means of slowing or stopping the progression of this deadly disorder.
Ample evidence from animal studies supports regular supplementation with omega-3 oils as a means of lowering long-term cardiovascular risk. This may be due to omega-3 fatty acids’ effects on reducing inflammation, lowering triglycerides, reducing blood pressure, improving endothelial function, inducing new blood vessel formation after heart attack or stroke, and favorable modification of obesity-related inflammatory molecules.35-39
Omega-3 [(n-3)] long-chain PUFA, including EPA and DHA, are dietary fats with an array of health benefits (1). They are incorporated in many parts of the body including cell membranes (2) and play a role in antiinflammatory processes and in the viscosity of cell membranes (3, 4). EPA and DHA are essential for proper fetal development and healthy aging (5). DHA is a key component of all cell membranes and is found in abundance in the brain and retina (6). EPA and DHA are also the precursors of several metabolites that are potent lipid mediators, considered by many investigators to be beneficial in the prevention or treatment of several diseases (7).
Omega-3s are important components of the membranes that surround each cell in your body. DHA levels are especially high in retina (eye), brain, and sperm cells. Omega-3s also provide calories to give your body energy and have many functions in your heart, blood vessels, lungs, immune system, and endocrine system (the network of hormone-producing glands).
Protects Vision: Our eyes' retinas are a membranous structures and the whole eye is covered in a soft double layer of membranes, making your eyes' health dependent on the liver (who knew?). The liver helps metabolize fat-soluble vitamins that feed and maintain those membranes. If you're deficient in DHA, it affects how we see by delaying the system that converts light into neural energy in the retina.
If we want to deliver the benefits associated with EPA therapeutically, it is essential to optimise digestion and uptake. If we take EPA and DHA in their natural 1.5:1 ratio, it’s an uphill struggle for EPA because we know that DHA is more effectively absorbed and assimilated into cells. Delivering the benefits of EPA (for example, for cognitive function, mood and depression, inflammation regulation, heart health, skin health and so on), requires doses of EPA in excess of DHA, which determines the type of benefits obtained and the degree of the beneficial outcomes. The higher the ratio of EPA to DHA (meaning higher doses of EPA in relation to DHA), the more likely that EPA will be digested and absorbed, ready to meet the body’s high demands for this important nutrient.
Children, in particular, seem to experience problems with sleep when they don’t get enough omega-3 fatty acids in their diets. In adults, low omega-3 levels are associated with obstructive sleep apnea. One reason for this may be that low omega-3s are linked to lower levels of melatonin, the hormone partly responsible for helping you to get to sleep in the first place.
56. Davidson MH, Stein EA, Bays HE, et al. COMBination of prescription Omega-3 with Simvastatin (COMBOS) Investigators. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007;29:1354–1367. [PubMed]
The question is whether the observed cardiovascular benefits often found among fish eaters is due solely to the oils in fish or to some other characteristics of seafood or to still other factors common to those who eat lots of fish, like eating less meat or pursuing a healthier lifestyle over all. Whatever the answer, it does not seem to be fish oil supplements.
The chemical structure of eicosapentaenoic acid and docosahexaenoic acid. Eicosapentaenoic acid consists of 20 carbons (C20) with 5 double bonds, and the last unsaturated carbon is located third from the methyl end (n-3). Do-cosahexaenoic acid consists of 22 carbons (C22) with 6 double bonds, and also with the3 last unsaturated carbon located third from the methyl end (n-3). Adapted with permission from Frishman et al, eds. Cardiovascular Pharmacotherapeutics. New York, NY: McGraw Hill; 2003.3
“This idea has since been pretty discredited; we really don’t know if the Eskimos got heart disease or not,” said Malden C. Nesheim, emeritus professor of nutrition at Cornell University, who chaired an Institute of Medicine committee assessing the risks and benefits of seafood in the early 2000s. “I’ve been an omega-3 skeptic since doing this study.”

Because of the preliminary state of knowledge on the effects of omega-3 PUFA treatment on anxiety, we decided to include as many studies as possible and not to set further limitations on specific characteristics, such as length of study, diagnosis, omega-3 PUFA dosage, omega-3 PUFA preparation (EPA to DHA ratio), rated anxiety coding scale, or type of control. Therefore, we chose to make the inclusion criteria as broad as possible to avoid missing any potentially eligible studies. The inclusion criteria included clinical trials in humans (randomized or nonrandomized), studies investigating the effects of omega-3 PUFA treatment on anxiety symptoms, and formal published articles in peer-reviewed journals. The clinical trials could be placebo controlled or non–placebo controlled. The target participants could include healthy volunteers, patients with psychiatric illness, and patients with physical illnesses other than psychiatric illnesses. The exclusion criteria included case reports or series, animal studies or review articles, and studies not investigating the effects of omega-3 PUFA treatment on anxiety symptoms. We did not set any language limitation to increase the number of eligible articles. Figure 1 shows the literature search and screening protocol.
Krill oil is a source of omega−3 fatty acids.[116] The effect of krill oil, at a lower dose of EPA + DHA (62.8%), was demonstrated to be similar to that of fish oil on blood lipid levels and markers of inflammation in healthy humans.[117] While not an endangered species, krill are a mainstay of the diets of many ocean-based species including whales, causing environmental and scientific concerns about their sustainability.[118][119][120]
Infant development. There is some evidence that mothers who eat fish or take fish oil supplements during pregnancy may improve some aspects of their baby's mental development. Taking fish oil during breast-feeding does not have this effect. However, feeding infants formula fortified with fish oil appears to improve some aspect of the baby's vision by the age of 2 months.
×