Whilst EPA and DHA are both considered to be important regulators of immunity, platelet aggregation and inflammation, their health-influencing by-products arise from very different pathways and their effects in the body differ. DHA is the most abundant omega-3 fatty acid in cell membranes, present in all organs and most abundant in the brain and retina, playing an important structural role. EPA is present structurally only in minute quantities, always being utilised and under constant demand to be replaced. Whilst DHA provides mainly a structural role, it is becoming evident that EPA may be the dominant functional fatty acid out of the two in many areas of health and especially in inflammatory conditions.
The strongest evidence for a beneficial effect of omega-3 fats has to do with heart disease. These fats appear to help the heart beat at a steady clip and not veer into a dangerous or potentially fatal erratic rhythm. (1) Such arrhythmias cause most of the 500,000-plus cardiac deaths that occur each year in the United States. Omega-3 fats also lower blood pressure and heart rate, improve blood vessel function, and, at higher doses, lower triglycerides and may ease inflammation, which plays a role in the development of atherosclerosis. (1)
Fatty predatory fish like sharks, swordfish, tilefish, and albacore tuna may be high in omega-3 fatty acids, but due to their position at the top of the food chain, these species may also accumulate toxic substances through biomagnification. For this reason, the United States Environmental Protection Agency recommends limiting consumption (especially for women of childbearing age) of certain (predatory) fish species (e.g. albacore tuna, shark, king mackerel, tilefish and swordfish) due to high levels of the toxic contaminant mercury. Dioxin, PCBs and chlordane are also present.[13] Fish oil is used as a component in aquaculture feed. More than 50 percent of the world's fish oil used in aquaculture feed is fed to farmed salmon.[14]
Many people focus on the dosage of fish oil to take, like 1000 mg or 1200 mg, but it is the omega-3s that matter. This is where the benefits of fish oil are found. The two types of omega-3 fatty acids to focus on are EPA and DHA. These omega-3s are naturally found in oily fish like salmon, halibut, sardines and anchovies, and are the very reason why fish oil supplements have received such high praise.

A 2014 meta-analysis of eleven trials conducted respectively on patients with a DSM-defined diagnosis of major depressive disorder (MDD) and of eight trials with patients with depressive symptomatology but no diagnosis of MDD demonstrated significant clinical benefit of omega-3 PUFA treatment compared to placebo. The study concluded that: "The use of omega-3 PUFA is effective in patients with diagnosis of MDD and on depressive patients without diagnosis of MDD."[42]
“Lipid peroxidation induced by DHA enrichment modifies paracellular permeability in Caco-2 cells: protective role of taurine.” We conclude that hydrogen peroxide and peroxynitrite may be involved in the DHA-induced increase in paracellular permeability and that the protective role of taurine may be in part related to its capacity to counteract the effects of hydrogen peroxide.
Boucher, O., Burden, M. J., Muckle, G., Saint-Amour, D., Ayotte, P., Dewailly, E. ... Jacobson, J. L.. (2011, May). Neurophysiologic and neurobehavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age. American Journal of Clinical Nutrition 93(5), 1025-1037. Retrieved from http://ajcn.nutrition.org/content/93/5/1025.full
Giacco, R., Cuomo, V., Vessby, B., Uusitupa, M., Hermansen, K., Meyer, B. J., Riccardi, G., and Rivellese, A. A. Fish oil, insulin sensitivity, insulin secretion and glucose tolerance in healthy people: is there any effect of fish oil supplementation in relation to the type of background diet and habitual dietary intake of n-6 and n-3 fatty acids? Nutr.Metab Cardiovasc.Dis. 2007;17(8):572-580. View abstract.
van der Meij, B. S., Langius, J. A., Smit, E. F., Spreeuwenberg, M. D., von Blomberg, B. M., Heijboer, A. C., Paul, M. A., and van Leeuwen, P. A. Oral nutritional supplements containing (n-3) polyunsaturated fatty acids affect the nutritional status of patients with stage III non-small cell lung cancer during multimodality treatment. J.Nutr. 2010;140(10):1774-1780. View abstract.
The GISSI-Prevenzione trial40 showed similar findings. In this open-label trial, 11,324 post-MI patients were followed for 3.5 years after randomization to either 1 g/d of omega-3 FA, vitamin E, both, or none. In the 2836 patients assigned to only omega-3 FA, the primary end point of death, nonfatal MI or stroke, was reduced by 10%. This decreased risk occurred despite a minimal triglyceride-lowering effect because of the relatively low dose of omega-3 FA. Of note, the GISSI-Prevenzione trial was done prior to the pervasive use of lipid-lowering agents. Only about 40% of patients were on any form of lipid-lowering therapy.
We hypothesized that omega-3 PUFAs might have anxiolytic effects in patients with significant anxiety- and fear-related symptoms. However, there have been no systematic reviews of this topic to date. Thus, we examined the anxiolytic effects of omega-3 PUFAs in participants with elevated anxiety symptoms in the results of clinical trials to determine the overall efficacy of omega-3 PUFAs for anxiety symptoms irrespective of diagnosis.
Added inactive ingredients also contribute to product safety. Eight supplements in this study contained ‘natural’ flavors such as citrus-derived additives. One product, Coromega Omega-3, also contained benzoic acid, a popular antibacterial agent linked to carcinogenic risks when combined with vitamin C. Other controversial excipients included the artificial coloring agents FD&C Blue 1 and FD&C Red 40 as well as the whitening agent titanium dioxide.
Why would someone foul a perfectly good box of rotini with omega 3 oils? This is based on the belief that omega 3 fatty acids reduce heart disease and vascular risk, probably through reducing blood pressure and cholesterol. This is a plausible claim, but as we see over and over again in medicine, plausibility (while nice) is insufficient as a basis for clinical claims.
In my opinion, the key benefit of DHA lies in its unique spatial characteristics. As mentioned earlier, the extra double bond (six in DHA vs. five in EPA) and increased carbon length (22 carbons in DHA vs. 20 in EPA) means that DHA takes up takes up a lot more space than does EPA in the membrane. Although this increase in spatial volume makes DHA a poor substrate for phospholipase A2 as well as the COX and LOX enzymes, it does a great job of making membranes (especially those in the brain) a lot more fluid as the DHA sweeps out a much greater volume in the membrane than does EPA. This increase in membrane fluidity is critical for synaptic vesicles and the retina of the eye as it allows receptors to rotate more effectively thus increasing the transmission of signals from the surface of the membrane to the interior of the nerve cells. This is why DHA is a critical component of these highly fluid portions of the nerves (7). On the other hand, the myelin membrane is essentially an insulator so that relatively little DHA is found in that part of the membrane.
This systematic review and meta-analysis of clinical trials conducted on participants with clinical anxiety symptoms provides the first meta-analytic evidence, to our knowledge, that omega-3 PUFA treatment may be associated with anxiety reduction, which might not only be due to a potential placebo effect, but also from some associations of treatment with reduced anxiety symptoms. The beneficial anxiolytic effects of omega-3 PUFAs might be stronger in participants with specific clinical diagnoses than in those without specific clinical conditions. Larger and well-designed clinical trials should be performed with high-dose omega-3 PUFAs, provided as monotherapy and as adjunctive treatment to standard therapy.
Joensen, A. M., Schmidt, E. B., Dethlefsen, C., Johnsen, S. P., Tjonneland, A., Rasmussen, L. H., and Overvad, K. Dietary intake of total marine n-3 polyunsaturated fatty acids, eicosapentaenoic acid, docosahexaenoic acid and docosapentaenoic acid and the risk of acute coronary syndrome - a cohort study. Br J Nutr 2010;103(4):602-607. View abstract.
In the United States, the Institute of Medicine publishes a system of Dietary Reference Intakes, which includes Recommended Dietary Allowances (RDAs) for individual nutrients, and Acceptable Macronutrient Distribution Ranges (AMDRs) for certain groups of nutrients, such as fats. When there is insufficient evidence to determine an RDA, the institute may publish an Adequate Intake (AI) instead, which has a similar meaning, but is less certain. The AI for α-linolenic acid is 1.6 grams/day for men and 1.1 grams/day for women, while the AMDR is 0.6% to 1.2% of total energy. Because the physiological potency of EPA and DHA is much greater than that of ALA, it is not possible to estimate one AMDR for all omega−3 fatty acids. Approximately 10 percent of the AMDR can be consumed as EPA and/or DHA.[105] The Institute of Medicine has not established a RDA or AI for EPA, DHA or the combination, so there is no Daily Value (DVs are derived from RDAs), no labeling of foods or supplements as providing a DV percentage of these fatty acids per serving, and no labeling a food or supplement as an excellent source, or "High in..."[citation needed] As for safety, there was insufficient evidence as of 2005 to set an upper tolerable limit for omega−3 fatty acids,[105] although the FDA has advised that adults can safely consume up to a total of 3 grams per day of combined DHA and EPA, with no more than 2 g from dietary supplements.[8]
Oftentimes this could be a result of poor body composition, poor activity levels, or other things, like a low-quality diet. Now, for other people, I do think it’s the case that for people who do not eat fish and for people whose animal products, especially their eggs, are mostly from animals fed grains rather than pasture-raised animals or who don’t eat eggs, I think in those cases there is an argument for fish oil in the sense that those people are probably not going to get enough omega-3 fatty acids, but the better argument might be: Eat pastured eggs or eat fish. Even eating an oily fish like salmon once or twice a week is probably good enough to provide the omega-3 fatty acids that you need. Eating some pastured egg yolks every day is probably good enough to provide for the omega-3 fatty acids that you need.
For patients without documented CAD, the American Heart Association 2006 Diet and Lifestyle Recommendations advise the consumption of at least 2 servings of fish per week, preferably fatty fish high in DHA and EPA.65 The guidelines also recommend a daily fish intake equivalent to 1 g/d of EPA and DHA for secondary prevention of CAD. Fish oil supplements containing EPA and DHA are suggested as an alternative to fatty fish consumption for secondary prevention.
Irving, G. F., Freund-Levi, Y., Eriksdotter-Jonhagen, M., Basun, H., Brismar, K., Hjorth, E., Palmblad, J., Vessby, B., Vedin, I., Wahlund, L. O., and Cederholm, T. Omega-3 fatty acid supplementation effects on weight and appetite in patients with Alzheimer's disease: the omega-3 Alzheimer's disease study. J Am Geriatr Soc 2009;57(1):11-17. View abstract.
Egert, S., Somoza, V., Kannenberg, F., Fobker, M., Krome, K., Erbersdobler, H. F., and Wahrburg, U. Influence of three rapeseed oil-rich diets, fortified with alpha-linolenic acid, eicosapentaenoic acid or docosahexaenoic acid on the composition and oxidizability of low-density lipoproteins: results of a controlled study in healthy volunteers. Eur J Clin Nutr 2007;61(3):314-325. View abstract.
Fish Oil capsules contain omega-3 polyunsaturated fatty acids. Omega-3 polyunsaturated fatty acids are found in oils from certain types of fish, vegetables, and other plant sources. These fatty acids are not made by the body and must be consumed in the diet. Omega-3 polyunsaturated fatty acids work by lowering the body's production of triglycerides. High levels of triglycerides can lead to coronary artery disease, heart disease, and stroke.
A lot of the benefit of fish oil seems to come from the omega-3 fatty acids that it contains. Interestingly, the body does not produce its own omega-3 fatty acids. Nor can the body make omega-3 fatty acids from omega-6 fatty acids, which are common in the Western diet. A lot of research has been done on EPA and DHA, two types of omega-3 acids that are often included in fish oil supplements.
×