Subgroup meta-analysis of the anxiolytic effects of omega-3 polyunsaturated fatty acids (PUFAs) based on different EPA percentages. The anxiolytic effects of omega-3 PUFAs were significant in the subgroup with an EPA percentage less than 60% (k, 11; Hedges g = 0.485; 95% CI, 0.017 to 0.954; P = .04) but not significant in the subgroups with an EPA percentage of at least 60% (k, 9; Hedges g, 0.092; 95% CI, –0.102 to 0.285; P = .35).
EPA and DHA  stand for eicosapentaenoic acid and docosahexaenoic acid respectively. These fatty acids are omega-3 fats, which are found in cold water fish. EPA DHA are highly unsaturated fats because they contain six and five double bonds on their long structural chains. These polyunsaturated fats play a very important role with the function of our bodies.
Both omega−6 and omega−3 fatty acids are essential: humans must consume them in their diet. Omega−6 and omega−3 eighteen-carbon polyunsaturated fatty acids compete for the same metabolic enzymes, thus the omega−6:omega−3 ratio of ingested fatty acids has significant influence on the ratio and rate of production of eicosanoids, a group of hormones intimately involved in the body's inflammatory and homeostatic processes, which include the prostaglandins, leukotrienes, and thromboxanes, among others. Altering this ratio can change the body's metabolic and inflammatory state.[16] In general, grass-fed animals accumulate more omega−3 than do grain-fed animals, which accumulate relatively more omega−6.[86] Metabolites of omega−6 are more inflammatory (esp. arachidonic acid) than those of omega−3. This necessitates that omega−6 and omega−3 be consumed in a balanced proportion; healthy ratios of omega−6:omega−3, according to some authors, range from 1:1 to 1:4.[87] Other authors believe that a ratio of 4:1 (4 times as much omega−6 as omega−3) is already healthy.[88][89] Studies suggest the evolutionary human diet, rich in game animals, seafood, and other sources of omega−3, may have provided such a ratio.[90][91]
In my opinion, the key benefit of DHA lies in its unique spatial characteristics. As mentioned earlier, the extra double bond (six in DHA vs. five in EPA) and increased carbon length (22 carbons in DHA vs. 20 in EPA) means that DHA takes up takes up a lot more space than does EPA in the membrane. Although this increase in spatial volume makes DHA a poor substrate for phospholipase A2 as well as the COX and LOX enzymes, it does a great job of making membranes (especially those in the brain) a lot more fluid as the DHA sweeps out a much greater volume in the membrane than does EPA. This increase in membrane fluidity is critical for synaptic vesicles and the retina of the eye as it allows receptors to rotate more effectively thus increasing the transmission of signals from the surface of the membrane to the interior of the nerve cells. This is why DHA is a critical component of these highly fluid portions of the nerves (7). On the other hand, the myelin membrane is essentially an insulator so that relatively little DHA is found in that part of the membrane.
Attention deficit-hyperactivity disorder (ADHD) in children. Early research shows that taking fish oil improves attention, mental function, and behavior in children 8-13 years-old with ADHD. Other research shows that taking a specific supplement containing fish oil and evening primrose oil (Eye Q, Novasel) improves mental function and behavior in children 7-12 years-old with ADHD.
First, always remember that it’s the omega-3s that count. When making your purchase, be sure to determine the amount of omega-3s per serving. Many doctors often recommend 1000 to 1200 mg of fish oil because that amount of fish oil contains the total amount of omega-3s the doctor wants you to consume. 1000 mg or 1200 mg of fish oil doesn’t equal 1000 or 1200 mg of omega-3s. A standard 1000 mg fish oil softgel provides around 300 mg of omega-3s (and even less of the important EPA and DHA), and to meet the 500 mg EPA and DHA recommendation, a minimum of two softgels would be necessary. Make sure to read the “Supplement Facts” label to determine the amount of EPA and DHA in a fish oil/omega-3 supplement.

Kabir, M., Skurnik, G., Naour, N., Pechtner, V., Meugnier, E., Rome, S., Quignard-Boulange, A., Vidal, H., Slama, G., Clement, K., Guerre-Millo, M., and Rizkalla, S. W. Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized controlled study. Am.J.Clin.Nutr. 2007;86(6):1670-1679. View abstract.


And in osteoarthritis, when a DHA/EPA formulation was added to chondroitin sulfate, people experienced more complete relief of symptoms such as stiffness and pain. One study found a significant increase in walking speed in people who supplemented with fish oil versus those who did not.79,80 As with the beneficial results seen in people with bone loss, these positive findings may have been the result of the decreased inflammatory destruction of joint cartilage.81
Currently, there isn’t a set standard recommendation for how many omega-3s we need each day, but suggestions range from a fish oil dosage of 500 to 1,000 milligrams daily depending on whom you ask. How easy is it to get these recommended amounts? To give you an idea, there are more than 500 milligrams of total omega-3s in one can of tuna fish and one small serving of wild-caught salmon.
EPA and DHA are vital nutrients and may be taken to maintain healthy function of the following: brain and retina: DHA is a building block of tissue in the brain and retina of the eye. It helps with forming neural transmitters, such as phosphatidylserine, which is important for brain function. DHA is found in the retina of the eye and taking DHA may be necessary for maintaining healthy levels of DHA for normal eye function.
The Japanese notably have the lowest levels of coronary heart disease mortality and atherosclerosis among developed nations — a phenomena that has been largely subscribed to diet. However, even within Japan, a 10-year study of over 41,000 people found that higher intakes of omega-3s were associated with lower risks of nonfatal coronary events (8). A more recent study also found that Japanese with higher omega-3 index levels (10%) had a lower risk of fatal coronary heart disease than those with a lower omega-3 index levels (8%) (9). The study begs the question of whether maybe even the Japanese have room to improve their omega-3 intake and whether 8% should be considered the lower limit of a desirable range.
They also found that taking more long-chain omega 3 fats (including EPA and DHA), primarily through supplements probably makes little or no difference to risk of cardiovascular events, coronary heart deaths, coronary heart disease events, stroke or heart irregularities. Long-chain omega 3 fats probably did reduce some blood fats, triglycerides and HDL cholesterol. Reducing triglycerides is likely to be protective of heart diseases, but reducing HDL has the opposite effect. The researchers collected information on harms from the studies, but information on bleeding and blood clots was very limited. 
Bemelmans, W. J., Broer, J., Feskens, E. J., Smit, A. J., Muskiet, F. A., Lefrandt, J. D., Bom, V. J., May, J. F., and Meyboom-de Jong, B. Effect of an increased intake of alpha-linolenic acid and group nutritional education on cardiovascular risk factors: the Mediterranean Alpha-linolenic Enriched Groningen Dietary Intervention (MARGARIN) study. Am J Clin Nutr 2002;75(2):221-227. View abstract.
^ Jump up to: a b Aursand, Marit; Mozuraityte, Revilija; Hamre, Kristin; Knutsen, Helle; Maage, Amund; Arukwe, Augustine (2011). Description of the processes in the value chain and risk assessment of decomposition substances and oxidation products in fish oils (PDF). Norwegian Scientific Committee for Food Safety. ISBN 978-82-8259-035-8. Retrieved 19 October 2012.[page needed]
Fish oil is a concentrated source of omega-3 fats, which are also called ω-3 fatty acids or n-3 fatty acids. To get more scientific, omega-3s are long-chain polyunsaturated fatty acids, or PUFAs. Our bodies are able to make most of the fats we need need, but that’s not true for omega-3 fatty acids. When it comes to these essential fats, we need to get them from omega-3 foods or supplements.
Fish oil has the ability to treat Attention Deficit Hyperactivity Disorder (ADHD) due to its high concentration of fatty acids. For children suffering from hyperactivity, dyslexia, dyspraxia, inability to complete tasks, emotional instability, wavering attitude, poor coordination, short attention span, short-term memory weakness, low concentration, tendency to interrupt others, recklessness, hastiness, impetuosity, impulsiveness, low IQ, or learning disorders, fish oil is a proven remedy. Research conducted at the University of South Australia and CSIRO has shown that when children suffering from ADHD were given doses of fish oil and evening primrose capsules for 15 weeks, they showed significant improvements in their behavior. Since, human brain consists of about 60% fats, especially essential fatty acids such as omega-3 and omega-6, it helps to improve the functions of the brain.
Dornstauder, B., Suh, M., Kuny, S., Gaillard, F., MacDonald, I., Michael T. Clandinin, M. T., & Sauvé, Y. (2012, June). Dietary docosahexaenoic acid supplementation prevents age-related functional losses and A2E accumulation in the retina. Investigative Ophthalmology and Visual Science. Retrieved from http://iovs.arvojournals.org/article.aspx?articleid=2188773

Damage to the kidneys caused the drug cyclosporine. Cyclosporine is a medication that reduces the chance of organ rejection after an organ transplant. Taking fish oil seems to prevent kidney damage in people taking this drug. Fish oil also seems to improve kidney function during the recovery phase following the rejection of a transplanted organ in people taking cyclosporine.
×