Macchia, A., Levantesi, G., Franzosi, M. G., Geraci, E., Maggioni, A. P., Marfisi, R., Nicolosi, G. L., Schweiger, C., Tavazzi, L., Tognoni, G., Valagussa, F., and Marchioli, R. Left ventricular systolic dysfunction, total mortality, and sudden death in patients with myocardial infarction treated with n-3 polyunsaturated fatty acids. Eur.J.Heart Fail. 2005;7(5):904-909. View abstract.
Studies have also shown that omega-3 fats are anti-arrhythmic (preventing or counteracting cardiac arrhythmia), anti-thrombotic (prevents thrombosis or a blood clot within a blood vessel), anti-atherosclerotic (preventing fatty deposits and fibrosis of the inner layer of your arteries), and anti-inflammatory (counteracting inflammation – the heat, pain, swelling, etc).
Between the ages of five and 65, the majority of the body’s needs can be met by using EPA-rich oils and eating fish, marine products, organic greens and pastured animal products. EPA levels are under constant demand and low EPA levels in adolescents and adults correlates strongly with development of mental health issues, including depression, dyslexia and dyspraxia, heart problems, joint and bone conditions, as well as neurodegenerative diseases such as MS and Parkinson’s. EPA also protects our genes and cell cycle, as well as helping to keep our stress response regulated, so an adequate supply of EPA throughout adult life can help prevent a range of chronic illness.
Several large studies have linked higher blood levels of long-chain omega-3s with higher risks of prostate cancer. However, other research has shown that men who frequently eat seafood have lower prostate cancer death rates and that dietary intakes of long-chain omega-3s aren’t associated with prostate cancer risk. The reason for these apparently conflicting findings is unclear. 
Most U.S. adults fail to consume adequate amounts of foods rich in EPA and DHA on a regular basis (at least 8 ounces of fatty fish per week is recommended), and probably consume too many omega-6 fats in comparison (soybean oil, canola oil, cottonseed oil, etc.). This omega-3:omega-6 imbalance can have a negative effect on inflammation patterns and may also be implicated as a contributing factor to other processes related to cellular metabolism, hormone signaling, and even weight regulation.

Human diet has changed rapidly in recent centuries resulting in a reported increased diet of omega−6 in comparison to omega−3.[83] The rapid evolution of human diet away from a 1:1 omega−3 and omega−6 ratio, such as during the Neolithic Agricultural Revolution, has presumably been too fast for humans to have adapted to biological profiles adept at balancing omega−3 and omega−6 ratios of 1:1.[84] This is commonly believed to be the reason why modern diets are correlated with many inflammatory disorders.[83] While omega−3 polyunsaturated fatty acids may be beneficial in preventing heart disease in humans, the level of omega−6 polyunsaturated fatty acids (and, therefore, the ratio) does not matter.[78][85]

Ramakrishnan, U., Stein, A. D., Parra-Cabrera, S., Wang, M., Imhoff-Kunsch, B., Juarez-Marquez, S., Rivera, J., and Martorell, R. Effects of docosahexaenoic acid supplementation during pregnancy on gestational age and size at birth: randomized, double-blind, placebo-controlled trial in Mexico. Food Nutr Bull 2010;31(2 Suppl):S108-S116. View abstract.

Omega AD study, Irving et al. (54) Double-blind, placebo-controlled, randomized 1741 DHA (1.7 g/d) and EPA (0.6 g/d) for 6 mo, then for all subjects (supplementation group and placebo group) Supplementation was associated with positive weight gain and appetite in supplementation group at 6 mo, but not in the placebo group, and for both groups at 12 mo

Cardiovascular disease is the cause of 38% of all deaths in the United States, many of which are preventable (28). Chronic inflammation is thought to be the cause of many chronic diseases, including cardiovascular disease (29). EPA and DHA are thought to have antiinflammatory effects and a role in oxidative stress (30) and to improve cellular function through changes in gene expression (31). In a study that used human blood samples, EPA+DHA intake changed the expression of 1040 genes and resulted in a decreased expression of genes involved in inflammatory and atherogenesis-related pathways, such as nuclear transcription factor κB signaling, eicosanoid synthesis, scavenger receptor activity, adipogenesis, and hypoxia signaling (31). Circulating markers of inflammation, such as C-reactive protein (CRP), TNF α, and some ILs (IL-6, IL-1), correlate with an increased probability of experiencing a cardiovascular event (32). Inflammatory markers such as IL-6 trigger CRP to be synthesized by the liver, and elevated levels of CRP are associated with an increased risk of the development of cardiovascular disease (33). A study of 89 patients showed that those treated with EPA+DHA had a significant reduction in high-sensitivity CRP (66.7%, P < 0.01) (33). The same study also showed a significant reduction in heat shock protein 27 antibody titers (57.69%, P < 0.05), which have been shown to be overexpressed in heart muscle cells after a return of blood flow after a period of ischemia (ischemia-reperfusion injury) and may potentially have a cardioprotective effect (33).

The Department of Ecology of the State of Washington has ranked various seafood based on its EPA and DHA concentrations. The highest-ranking seafood is mackerel, excluding King mackerel, that has a concentration of 1,790 milligrams of combined EPA and DHA per 100 grams, followed by salmon at 1,590; bluefin tuna has between 1173 and 1504 milligrams; sardines contain 980 milligrams; albacore tuna has 862 milligrams; bass has 640 milligrams; tuna has 630 milligrams; trout and swordfish have 580 milligrams; and walleye has 530 milligrams. Other seafood, which includes sea bass, clams, lobster, scallops, catfish, cod, pollock, crayfish and scallops contains between 200 and 500 milligrams of EPA and DHA per 100 grams. Breaded fish products rank lowest on the list with only 0.26 milligram per 100 grams.
The chemical structure of eicosapentaenoic acid and docosahexaenoic acid. Eicosapentaenoic acid consists of 20 carbons (C20) with 5 double bonds, and the last unsaturated carbon is located third from the methyl end (n-3). Do-cosahexaenoic acid consists of 22 carbons (C22) with 6 double bonds, and also with the3 last unsaturated carbon located third from the methyl end (n-3). Adapted with permission from Frishman et al, eds. Cardiovascular Pharmacotherapeutics. New York, NY: McGraw Hill; 2003.3
Fish oil is also extremely beneficial for pregnant women and their children. Throughout pregnancy and also while breastfeeding, a woman’s omega-3 needs are even higher than usual. According to the American Pregnancy Association, most U.S. women are deficient in EPA and especially DHA going into pregnancy and get even more depleted during pregnancy, as the placenta supplies the fetus with DHA from the mother’s tissue. Omega-3 DHA is a critical building block of the fetal brain, eyes and nervous system. Once the baby is born, omega-3s continue to be vital to healthy brain development and immune function. (30)
Founder and currently Executive Editor of Science-Based Medicine Steven Novella, MD is an academic clinical neurologist at the Yale University School of Medicine. He is also the host and producer of the popular weekly science podcast, The Skeptics’ Guide to the Universe, and the author of the NeuroLogicaBlog, a daily blog that covers news and issues in neuroscience, but also general science, scientific skepticism, philosophy of science, critical thinking, and the intersection of science with the media and society. Dr. Novella also has produced two courses with The Great Courses, and published a book on critical thinking - also called The Skeptics Guide to the Universe.

LCn3s are long chain fatty acids from fish, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). ALA is plant-based omega 3-alpha‐linolenic acid. Fatty acids are essentially chains of carbon atoms with an OOH group at one end. The available binding sites on the carbon atoms are filled with hydrogen atoms. If every binding site is occupied with a hydrogen, that is a saturated fatty acid. If instead of hydrogen atoms there is a double bond between two adjacent carbon atoms, that is an unsaturated fatty acid. If there are multiple double bonds, that is polyunsaturated. Omega 3 fatty acids are unsaturated, with a double bond between the third and fourth carbon atoms from the end opposite the OOH group.
According to the 2012 National Health Interview Survey, which included a comprehensive survey on the use of complementary health approaches in the United States, fish oil supplements are the nonvitamin/nonmineral natural product most commonly taken by both adults and children. The survey findings indicated that about 7.8 percent of adults (18.8 million) and 1.1 percent of children age 4 to 17 (664,000) had taken a fish oil supplement in the previous 30 days.

Nielsen, A. A., Jorgensen, L. G., Nielsen, J. N., Eivindson, M., Gronbaek, H., Vind, I., Hougaard, D. M., Skogstrand, K., Jensen, S., Munkholm, P., Brandslund, I., and Hey, H. Omega-3 fatty acids inhibit an increase of proinflammatory cytokines in patients with active Crohn's disease compared with omega-6 fatty acids. Aliment.Pharmacol.Ther. 2005;22(11-12):1121-1128. View abstract.
A scientific review in 2014 evaluated study findings on omega-3 intake in relation to the prevention and treatment of breast cancer, the most prevalent cancer among women. The review found that EPA and DHA, as well as ALA, can differentially inhibit breast tumor development. According to this review, there is solid evidence to support the use of omega-3s as “a nutritional intervention in the treatment of breast cancer to enhance conventional therapeutics, or potentially lowering effective doses.” (16) Additionally, a 2016 study found that “very high fish consumption in early adulthood to midlife may be associated with decreased risk of breast cancer.” (17)
Carrero, J. J., Fonolla, J., Marti, J. L., Jimenez, J., Boza, J. J., and Lopez-Huertas, E. Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. J.Nutr. 2007;137(2):384-390. View abstract.
Sorgi, P. J., Hallowell, E. M., Hutchins, H. L. & Sears, B. (2007, January 17). Effects of an open-label pilot study with high-dose EPA/DHA concentrates on plasma phospholipids and behavior in children with attention deficit hyperactivity disorder. Nutrition Journal 6(16). Retrieved from

First difference is in the area of omega-6 fatty acid metabolism. Whereas EPA is the inhibitor of the enzyme (D5D) that directly produces AA, DHA is an inhibitor of another key enzyme delta-6-desaturase (D6D) that produces the first metabolite from linoleic acid known as gamma linolenic acid or GLA (6). However, this is not exactly an advantage. Even though reduction of GLA will eventually decrease AA production, it also has the more immediate effect of reducing the production of the next metabolite known as dihomo gamma linolenic acid or DGLA. This can be a disaster as a great number of powerful anti-inflammatory eicosanoids are derived from DGLA. This is why if you use high-dose DHA it is essential to add back trace amounts of GLA to maintain sufficient levels of DGLA to continue to produce anti-inflammatory eicosanoids.

High triglycerides. Most research shows that fish oil from supplements and food sources can reduce triglyceride levels. The effects of fish oil appear to be the greatest in people who have very high triglyceride levels. Also the amount of fish oil consumed seems to directly affect how much triglyceride levels are reduced. Some fish oil supplements including Lovaza, Omtryg, and Epanova have been approved by the FDA to lower triglycerides.