Maternal nutrition guidelines have always stressed a diet including sufficient caloric and protein requirements, but recently fatty acids have also been deemed important (17). This is partially due to the fact that EPA and DHA supplementation during pregnancy has been associated with multiple benefits for the infant (Table 1). During pregnancy, the placenta transfers nutrients, including DHA, from the mother to the fetus (18). The amount of omega-3 fatty acid in the fetus is correlated with the amount ingested by the mother, so it is essential that the mother has adequate nutrition (19). The 2010 U.S. Department of Health and Human Services dietary guidelines recommend that women who are pregnant or breastfeeding should “consume 8 to 12 ounces of seafood per week from a variety of seafood types” (12). Ingesting 8–12 oz of seafood per week, depending on the type of fish, is equivalent to ∼300–900 mg EPA+DHA per day. Unfortunately, this amount is not being met by most mothers in the United States and Canada, which means that infants many not be receiving adequate amounts of these vital nutrients in the womb (20).
There was a significantly greater association of treatment with reduced anxiety symptoms in participants receiving omega-3 PUFAs than in those not receiving omega-3 PUFAs in the subgroup with an EPA percentage less than 60% (k, 11; Hedges g, 0.485; 95% CI, 0.017-0.954; P = .04; Figure 4)35,49,52,54-61 but no significant difference in the association of treatment with reduced anxiety symptoms between participants receiving omega-3 PUFAs and those not receiving omega-3 PUFAs in the subgroup with an EPA percentage of at least 60% (k, 9; Hedges g, 0.092; 95% CI, –0.102 to 0.285; P = .35) (Figure 4).33,34,36,47,48,50,51,53,60 There were no significantly different estimated effect sizes between these 2 subgroups by the interaction test (P = .13).
Gajos, G., Zalewski, J., Rostoff, P., Nessler, J., Piwowarska, W., & Undas, A. (2011, May 26). Reduced thrombin formation and altered fibrin clot properties induced by polyunsaturated omega-3 fatty acids on top of dual antiplatelet therapy in patients undergoing percutaneous coronary intervention (OMEGA-PCI Clot). Arteriosclerosis, Thrombosis, and Vascular Biology 111.228593. Retrieved from http://atvb.ahajournals.org/content/early/2011/05/26/ATVBAHA.111.228593.abstract
One meta-analysis concluded that omega−3 fatty acid supplementation demonstrated a modest effect for improving ADHD symptoms.[39] A Cochrane review of PUFA (not necessarily omega−3) supplementation found "there is little evidence that PUFA supplementation provides any benefit for the symptoms of ADHD in children and adolescents",[40] while a different review found "insufficient evidence to draw any conclusion about the use of PUFAs for children with specific learning disorders".[41] Another review concluded that the evidence is inconclusive for the use of omega−3 fatty acids in behavior and non-neurodegenerative neuropsychiatric disorders such as ADHD and depression.[42]
The FDA product label on Lovaza warns of potential bleeding complications with the coadministration of anticoagulants. This warning is based on observational studies that suggested a prolonged bleeding time in populations ingesting high levels of fish oil77 and on in vitro studies that demonstrated an effect on pro-thrombotic mediators such as a reduction in thromboxane A2 production78 and platelet activation factor.79 The same trend, however, has not been clearly demonstrated in measurements of clotting times or in factors of fibrinolysis.80 In addition, in randomized clinical trials of patients undergoing coronary artery bypass graft surgery, percutaneous transluminal coronary angioplasty, endarterectomy and diagnostic angiography, no adverse bleeding related events have been demonstrated.81 For example, in a trial of 500 patients randomized to pretreatment with 6.9 g of DHA and EPA preparation 2 weeks before balloon percutaneous transluminal coronary angioplasty (where all the patients received 325 mg/d of aspirin and heparin bolus periprocedure), no difference was seen in bleeding complications.82 Similar results were seen in a trial of 610 patients undergoing coronary artery bypass graft surgery, randomized to either placebo or 4 g/d of fish oil and then further randomized to aspirin or warfarin (dosed to an international normalized ratio [INR] goal of 2.5–4.2). At 1 year, the number of bleeding complications was not increased.15 The effect of fish oil on INR values has not been studied extensively, but a small, randomized trial showed that fish oil did not alter the Coumadin dosing regimen.83 There is very little evidence that a lower target INR is necessary in patients receiving chronic warfarin therapy and fish oil.
Fish oils seem to decrease blood pressure. Taking fish oils along with medications for high blood pressure might cause your blood pressure to go too low.Some medications for high blood pressure include captopril (Capoten), enalapril (Vasotec), losartan (Cozaar), valsartan (Diovan), diltiazem (Cardizem), Amlodipine (Norvasc), hydrochlorothiazide (HydroDiuril), furosemide (Lasix), and many others.
First difference is in the area of omega-6 fatty acid metabolism. Whereas EPA is the inhibitor of the enzyme (D5D) that directly produces AA, DHA is an inhibitor of another key enzyme delta-6-desaturase (D6D) that produces the first metabolite from linoleic acid known as gamma linolenic acid or GLA (6). However, this is not exactly an advantage. Even though reduction of GLA will eventually decrease AA production, it also has the more immediate effect of reducing the production of the next metabolite known as dihomo gamma linolenic acid or DGLA. This can be a disaster as a great number of powerful anti-inflammatory eicosanoids are derived from DGLA. This is why if you use high-dose DHA it is essential to add back trace amounts of GLA to maintain sufficient levels of DGLA to continue to produce anti-inflammatory eicosanoids.
Dioxins and PCBs may be carcinogenic at low levels of exposure over time. These substances are identified and measured in one of two categories, dioxin-like PCBs and total PCBs. While the U.S. FDA has not set a limit for PCBs in supplements, the Global Organization for EPA and DHA (GOED) has established a guideline allowing for no more than 3 picograms of dioxin-like PCBs per gram of fish oil. In 2012, samples from 35 fish oil supplements were tested for PCBs. Trace amounts of PCBs were found in all samples, and two samples exceeded the GOED‘s limit.[52] Although trace amounts of PCBs contribute to overall PCB exposure, Consumerlab.com claims the amounts reported by tests it ordered on fish oil supplements are far below those found in a single typical serving of fish.[52]
If you’re not able to get enough fish oil benefits through your diet, fish oil supplements can be a good option. Fish oil side effects can include belching, bad breath, heartburn, nausea, loose stools, rash and nosebleeds, but in my experience, taking a high-quality fish oil supplement can reduce the likelihood of any unwanted side effects. It’s also a good idea to take fish oil with meals to reduce side effects.
In recent years, many people – particularly those who strictly follow a vegetarian or vegan diet – have believed that they do not have to consume animal products to get omega-3s, as long as they are consuming high amounts of plant-based omega-3s. But, as I mentioned before, most of the health benefits that you can get from omega-3 fats are linked to animal-based EPA and DHA fats – not plant-based ALA. They are simply NOT interchangeable.
High blood pressure. Fish oil seems to slightly lower blood pressure in people with moderate to very high blood pressure. Some types of fish oil might also reduce blood pressure in people with slightly high blood pressure, but results are inconsistent. Fish oil seems to add to the effects of some, but not all, blood pressure-lowering medications. However, it doesn't seem to reduce blood pressure in people with uncontrolled blood pressure who are already taking blood pressure-lowering medications.
×