AMA Manual of Style Art and Images in Psychiatry Breast Cancer Screening Guidelines Colorectal Screening Guidelines Declaration of Helsinki Depression Screening Guidelines Evidence-Based Medicine: An Oral History Fishbein Fellowship Genomics and Precision Health Health Disparities Hypertension Guidelines JAMA Network Audio JAMA Network Conferences Med Men Medical Education Opioid Management Guidelines Peer Review Congress Research Ethics Sepsis and Septic Shock Statins and Dyslipidemia Topics and Collections
Children require DHA for growth and development, and the brain, CNS and retina rely heavily on the adequate supply of DHA during growth in the womb. Thus women should emphasise DHA in their diets when they become pregnant and continue to take this until they cease breastfeeding. Children continue to need DHA up until the age they start school, so if children under the age of five are taking an omega-3 supplement, it should contain DHA. The exception is for children with developmental problems – where pure EPA or high EPA omega-3 has been shown to be most effective for supporting cognitive function. We would still recommend, where possible, naturally derived sources of omega-3 such as oily fish to support a balanced EPA and DHA intake.
Finally, in order for AA to be converted into inflammatory products it must be released from phospholipids (part of the cell membrane) using the enzyme phospholipase A2 and then converted by the enzyme cyclooxygenase. EPA utilises both of these enzymes, so if EPA levels are increased in the diet, it attracts enzyme away from AA to EPA – again giving rise to anti-inflammatory products instead of inflammatory ones.
Given the wide-ranging importance and benefits of marine omega-3 fatty acids, it is important to eat fish or other seafood one to two times per week, particularly fatty (dark meat) fish that are richer in EPA and DHA. This is especially important for women who are pregnant or hoping to become pregnant and nursing mothers. From the third trimester until the second year of life, a developing child needs a steady supply of DHA to form the brain and other parts of the nervous system. Many women shy away from eating fish because of concerns that mercury and other possible contaminants might harm their babies, (9) yet the evidence for harm from lack of omega-3 fats is far more consistent, and a balance of benefit vs. risk is easily obtained. (To learn more about the controversy over contaminants in fatty fish, read Fish: Friend or Foe.)
Irving, G. F., Freund-Levi, Y., Eriksdotter-Jonhagen, M., Basun, H., Brismar, K., Hjorth, E., Palmblad, J., Vessby, B., Vedin, I., Wahlund, L. O., and Cederholm, T. Omega-3 fatty acid supplementation effects on weight and appetite in patients with Alzheimer's disease: the omega-3 Alzheimer's disease study. J Am Geriatr Soc 2009;57(1):11-17. View abstract.
Omega-3 [(n-3)] fatty acids have been linked to healthy aging throughout life. Recently, fish-derived omega-3 fatty acids EPA and DHA have been associated with fetal development, cardiovascular function, and Alzheimer's disease. However, because our bodies do not efficiently produce some omega-3 fatty acids from marine sources, it is necessary to obtain adequate amounts through fish and fish-oil products. Studies have shown that EPA and DHA are important for proper fetal development, including neuronal, retinal, and immune function. EPA and DHA may affect many aspects of cardiovascular function including inflammation, peripheral artery disease, major coronary events, and anticoagulation. EPA and DHA have been linked to promising results in prevention, weight management, and cognitive function in those with very mild Alzheimer's disease.
We’ve written about the dose necessary to achieve measurable benefits before. However, a person’s actual omega-3 intake can be tricky to estimate. Even if you eat at least two servings of fatty fish per week, as the American Heart Association recommends (10), your fish might contain more or less omega-3s depending on the fish species, the time of year, and how you cook it. Even taking fish oil supplements isn’t always straightforward, as dose can be impacted by numerous bioavailability factors, as well as genetics, age, gender, medication-use and lifestyle.
A number of trials have found that omega-3 PUFAs might reduce anxiety under serious stressful situations. Case-controlled studies have shown low peripheral omega-3 PUFA levels in patients with anxiety disorders.27-31 A cohort study found that high serum EPA levels were associated with protection against posttraumatic stress disorder.32 In studies of therapeutic interventions, while a randomized clinical trial of adjunctive EPA treatment in patients with obsessive-compulsive disorder revealed that EPA augmentation had no beneficial effect on symptoms of anxiety, depression, or obsessive-compulsiveness,33 a randomized clinical trial involving participants with substance abuse showed that EPA and DHA administration was accompanied by significant decreases in anger and anxiety scores compared with placebo.34 In addition, a randomized clinical trial found that omega-3 PUFAs had additional effects on decreasing depressive and anxiety symptoms in patients with acute myocardial infarction,35 and a randomized clinical trial demonstrated that omega-3 PUFAs could reduce inflammation and anxiety among healthy young adults facing a stressful major examination.36 Despite the largely positive findings of these trials, the clinical application of the findings is unfortunately limited by their small sample sizes.
Carrero, J. J., Fonolla, J., Marti, J. L., Jimenez, J., Boza, J. J., and Lopez-Huertas, E. Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. J.Nutr. 2007;137(2):384-390. View abstract.
In my opinion, the key benefit of DHA lies in its unique spatial characteristics. As mentioned earlier, the extra double bond (six in DHA vs. five in EPA) and increased carbon length (22 carbons in DHA vs. 20 in EPA) means that DHA takes up takes up a lot more space than does EPA in the membrane. Although this increase in spatial volume makes DHA a poor substrate for phospholipase A2 as well as the COX and LOX enzymes, it does a great job of making membranes (especially those in the brain) a lot more fluid as the DHA sweeps out a much greater volume in the membrane than does EPA. This increase in membrane fluidity is critical for synaptic vesicles and the retina of the eye as it allows receptors to rotate more effectively thus increasing the transmission of signals from the surface of the membrane to the interior of the nerve cells. This is why DHA is a critical component of these highly fluid portions of the nerves (7). On the other hand, the myelin membrane is essentially an insulator so that relatively little DHA is found in that part of the membrane.
The chemical structure of eicosapentaenoic acid and docosahexaenoic acid. Eicosapentaenoic acid consists of 20 carbons (C20) with 5 double bonds, and the last unsaturated carbon is located third from the methyl end (n-3). Do-cosahexaenoic acid consists of 22 carbons (C22) with 6 double bonds, and also with the3 last unsaturated carbon located third from the methyl end (n-3). Adapted with permission from Frishman et al, eds. Cardiovascular Pharmacotherapeutics. New York, NY: McGraw Hill; 2003.3
Jump up ^ Kwak SM, Myung SK, Lee YJ, Seo HG (May 2012). "Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials". Archives of Internal Medicine. 172 (9): 686–94. doi:10.1001/archinternmed.2012.262. PMID 22493407.
It is also believed that women who do not have a sufficient intake of EPA and DHA in their diet suffer from depression after childbirth, as there is a transfer of some amount of brain mass from the mother to the child in the last stages of pregnancy. Thus, it is very beneficial to consume fish oil either by eating fish or taking fish oil supplements, tablets, capsules, or pills during pregnancy for the overall development of the child and the well-being of the mother. However, it should be noted that fish oil obtained from the liver of the fish, example – cod liver oil, should not be consumed during pregnancy as cod liver oil is high in retinol and vitamin A, which are usually known to cause birth defects.
An animal study involving the omega-3 ETA discovered that subjects experienced a drop in overall inflammation similar to that caused by NSAIDs (non-steroidal anti-inflammatory drugs), but without the dangerous gastrointestinal side effects. The study authors also pointed out that eicosapentaenoic acid seems to be even more potent than the conventional omega-3s found in fish oil supplements (EPA/DHA). (56)

Omega-3s have been studied for other conditions, with either inconclusive or negative results. These conditions include allergies, atopic eczema (an allergic skin condition), cystic fibrosis, diabetes, inflammatory bowel diseases (Crohn’s disease or ulcerative colitis), intermittent claudication (a circulatory problem), nonalcoholic fatty liver disease, and osteoporosis. 
Nakamura, N., Hamazaki, T., Ohta, M., Okuda, K., Urakaze, M., Sawazaki, S., Yamazaki, K., Satoh, A., Temaru, R., Ishikura, Y., Takata, M., Kishida, M., and Kobayashi, M. Joint effects of HMG-CoA reductase inhibitors and eicosapentaenoic acids on serum lipid profile and plasma fatty acid concentrations in patients with hyperlipidemia. Int J Clin Lab Res 1999;29(1):22-25. View abstract.
Because patients with depression experience rapid shrinking of their hippocampus, many strategies for relieving depression focus on increasing new brain cell growth in that specific area of the brain.23 There’s now evidence that increasing omega-3 intake, especially DHA, may be an effective way of treating or preventing depression, partly by protecting the hippocampus from further shrinkage.23
Omega-3 fatty acids, which are found abundantly in fish oil, are increasingly being used in the management of cardiovascular disease. It is clear that fish oil, in clinically used doses (typically 4 g/d of eicosapentaenoic acid and docosahexaenoic acid) reduce high triglycerides. However, the role of omega-3 fatty acids in reducing mortality, sudden death, arrhythmias, myocardial infarction, and heart failure has not yet been established. This review will focus on the current clinical uses of fish oil and provide an update on their effects on triglycerides, coronary artery disease, heart failure, and arrhythmia. We will explore the dietary sources of fish oil as compared with drug therapy, and discuss the use of fish oil products in combination with other commonly used lipid-lowering agents. We will examine the underlying mechanism of fish oil’s action on triglyceride reduction, plaque stability, and effect in diabetes, and review the newly discovered anti-inflammatory effects of fish oil. Finally, we will examine the limitations of current data and suggest recommendations for fish oil use.
While fish oil has plenty of beneficial qualities, there is a lot of hype around its possible applications, and not all of them are accurate, so be wary when reading literature on this useful oil. Fish oil manufacturers have attempted to market it as a remedy for almost anything. We suggest that readers educate themselves fully before making an informed decision, rather than getting affected by both negative and positive propaganda about the beneficial applications of fish oil.
Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.
First, always remember that it’s the omega-3s that count. When making your purchase, be sure to determine the amount of omega-3s per serving. Many doctors often recommend 1000 to 1200 mg of fish oil because that amount of fish oil contains the total amount of omega-3s the doctor wants you to consume. 1000 mg or 1200 mg of fish oil doesn’t equal 1000 or 1200 mg of omega-3s. A standard 1000 mg fish oil softgel provides around 300 mg of omega-3s (and even less of the important EPA and DHA), and to meet the 500 mg EPA and DHA recommendation, a minimum of two softgels would be necessary. Make sure to read the “Supplement Facts” label to determine the amount of EPA and DHA in a fish oil/omega-3 supplement.
Henneicke-von Zepelin, H. H., Mrowietz, U., Farber, L., Bruck-Borchers, K., Schober, C., Huber, J., Lutz, G., Kohnen, R., Christophers, E., and Welzel, D. Highly purified omega-3-polyunsaturated fatty acids for topical treatment of psoriasis. Results of a double-blind, placebo-controlled multicentre study. Br J Dermatol 1993;129(6):713-717. View abstract.

The chemical structures of EPA and DHA are very similar and they compete for uptake and processing resources. During digestion, the triglyceride molecules in standard fish oil are broken down into a mono glycerol and two free fatty acids, small enough to be absorbed into cells of the gut lining. More often than not, DHA is the fatty acid that remains attached to the glycerol backbone, meaning in essence that DHA gets a ‘free pass’ into the gut, while the remaining free fatty acids (more often EPA) must reattach onto a glycerol molecule or risk being oxidised and used as fuel. The implication of this is that DHA levels in our cells are often concentrated at the expense of EPA after absorption when taking EPA and DHA in the standard ratio of 1.5 to 1.

A Cochrane meta-analysis published in June 2012 found no significant protective effect for cognitive decline for those aged 60 and over and who started taking fatty acids after this age. A co-author of the study said to Time, "Our analysis suggests that there is currently no evidence that omega-3 fatty acid supplements provide a benefit for memory or concentration in later life".[43]


Full citation: Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega 3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews 2018, Issue 7. Art. No.: CD003177. DOI: 10.1002/14651858.CD003177.pub3.

Results of studies investigating the role of LCPUFA supplementation and LCPUFA status in the prevention and therapy of atopic diseases (allergic rhinoconjunctivitis, atopic dermatitis and allergic asthma) are controversial; therefore, at the present stage of our knowledge (as of 2013) we cannot state either that the nutritional intake of n−3 fatty acids has a clear preventive or therapeutic role, or that the intake of n-6 fatty acids has a promoting role in context of atopic diseases.[64]
After just seven days, those supplementing with krill had their CRP levels reduced by 19.3%, while in the placebo group, CRP levels rose by 15.7%. Even more impressive, the krill benefit was long-lasting. The krill group’s CRP levels continued to fall by 29.7% at 14 days, and 30.9% at 30 days. More importantly from the patients’ points of view, the krill oil supplement reduced pain scores by 28.9%, reduced stiffness by 20.3%, and reduced functional impairment by 22.8%.
Fish oil contains two very important omega-3 PUFAs. I’m talking about docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). DHA and EPA are sometimes called the marine omega-3s because they mainly come from fish. Some of the best fish to eat to obtain fish oil from in your diet include wild-caught salmon, herring, white fish, sardines and anchovies.
Nakamura, N., Hamazaki, T., Ohta, M., Okuda, K., Urakaze, M., Sawazaki, S., Yamazaki, K., Satoh, A., Temaru, R., Ishikura, Y., Takata, M., Kishida, M., and Kobayashi, M. Joint effects of HMG-CoA reductase inhibitors and eicosapentaenoic acids on serum lipid profile and plasma fatty acid concentrations in patients with hyperlipidemia. Int J Clin Lab Res 1999;29(1):22-25. View abstract.
Good points, Miroslav. Focusing on your 4th point, with so many different formulations on the market that contain various preservatives, only looking at the blood levels of omega-3’s as the flag for increased risk for prostate cancer tends to ignore the fact that certain populations in coastal regions maintain a diet high in omega fish oils and don’t have a marked increase level of prostate cancer, pointing to the fact that another agent may be to blame here.
Your body can convert some ALA into EPA and then DHA, but not enough to meet all your body’s needs but the best way to assure you are getting enough heart healthy fats is to eat foods high in the omega 3 fats, and if you can’t or don’t get enough of these necessary fats in your diet, you might consider taking an omega 3 supplement to boost these needed fats. More on this later.
Muñoz MA, Liu W, Delaney JA, Brown E, Mugavero MJ, Mathews WC, Napravnik S, Willig JH, Eron JJ, Hunt PW, Kahn JO, Saag MS, Kitahata MM, Crane HM. Comparative effectiveness of fish oil versus fenofibrate, gemfibrozil, and atorvastatin on lowering triglyceride levels among HIV-infected patients in routine clinical care. J Acquir Immune Defic Syndr 2013;64(3):254-60. View abstract.
Joensen, A. M., Schmidt, E. B., Dethlefsen, C., Johnsen, S. P., Tjonneland, A., Rasmussen, L. H., and Overvad, K. Dietary intake of total marine n-3 polyunsaturated fatty acids, eicosapentaenoic acid, docosahexaenoic acid and docosapentaenoic acid and the risk of acute coronary syndrome - a cohort study. Br J Nutr 2010;103(4):602-607. View abstract.
Krauss-Etschmann et al. (26) Double-blind, placebo-controlled, randomized 311 DHA+EPA daily with either fish oil with DHA (0.5 g) and EPA (0.15 g) or with methyltetrahydrofolic acid (400 μg), both, or placebo, from gestation week 22 Fish-oil supplementation was associated with decreased levels of maternal inflammatory/TH1 cytokines and a decrease of fetal Th2-related cytokines
Although there are no randomized data on fish oil consumption and protection from sudden death, observational studies have linked omega-3 FA with the prevention of sudden death. In a population-based, case-control study of sudden cardiac death victims, the mean red blood cell membrane omega-3 FA level of the lowest quartile, when compared with the mean level of the third quartile, was associated with a relative risk reduction of 70%.33 A similar finding was appreciated in a nested, prospective, case-control study of the Physician Health Study cohort of 22,000 healthy males. In the 119 patients that succumbed to sudden death, baseline omega-3 FA blood levels were significantly lower than in matched controls.34 Finally, in an analysis of data from the Nurses Health Study, a cohort study of 84,688 women, an inverse association was shown between fish consumption and CAD-related death. The investigators concluded that the reduction in CAD deaths was likely due to a reduction in sudden deaths, as there was no difference in the rate of MI when comparing high and low fish consumption.35
Fatty predatory fish like sharks, swordfish, tilefish, and albacore tuna may be high in omega-3 fatty acids, but due to their position at the top of the food chain, these species may also accumulate toxic substances through biomagnification. For this reason, the United States Environmental Protection Agency recommends limiting consumption (especially for women of childbearing age) of certain (predatory) fish species (e.g. albacore tuna, shark, king mackerel, tilefish and swordfish) due to high levels of the toxic contaminant mercury. Dioxin, PCBs and chlordane are also present.[13] Fish oil is used as a component in aquaculture feed. More than 50 percent of the world's fish oil used in aquaculture feed is fed to farmed salmon.[14]
You “beat me to the punch.” despite labels, cured meats , aged fats, as well as those heated to a high enough temperature all have trans bonds. Fish that offer high amounts of Omega-3 also often are high in mercury. I was fortunate to have a very good teacher for experimental design. One should be careful to assume that a study actually measures what it claims to and without “confounders” Confounders are parts of the study that complicate the the “logic” of the design. Also, were other fat contents measured or controlled? It would be reasonable to suspect that those with higher levels of Omega-3 could have higher levels of Omega-6, fats in general , High levels of protein, higher levels of testosterone, or lower levels of certain hormones. In addition, statistical studies do not and have never indicated a causal relationship. I have a fear of how much we have begun to rely on statistical correlational studies which are at the end of the day”soft” science.

If you have a bleeding disorder, bruise easily or take blood-thinning medications, you should use fish oil supplements with extra caution since large doses of omega-3 fatty acids can increase bleeding risk. This bleeding risk also applies to people with no history of bleeding disorders or current medication usage. If you have type 2 diabetes, you should only use fish oil supplements under your doctor’s supervision. Individuals with type 2 diabetes can experience increases in fasting blood sugar levels while taking fish oil supplements.


Kabir, M., Skurnik, G., Naour, N., Pechtner, V., Meugnier, E., Rome, S., Quignard-Boulange, A., Vidal, H., Slama, G., Clement, K., Guerre-Millo, M., and Rizkalla, S. W. Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized controlled study. Am.J.Clin.Nutr. 2007;86(6):1670-1679. View abstract.
Oe, H., Hozumi, T., Murata, E., Matsuura, H., Negishi, K., Matsumura, Y., Iwata, S., Ogawa, K., Sugioka, K., Takemoto, Y., Shimada, K., Yoshiyama, M., Ishikura, Y., Kiso, Y., and Yoshikawa, J. Arachidonic acid and docosahexaenoic acid supplementation increases coronary flow velocity reserve in Japanese elderly individuals. Heart 2008;94(3):316-321. View abstract.
×