This systematic review and meta-analysis of clinical trials conducted on participants with clinical anxiety symptoms provides the first meta-analytic evidence, to our knowledge, that omega-3 PUFA treatment may be associated with anxiety reduction, which might not only be due to a potential placebo effect, but also from some associations of treatment with reduced anxiety symptoms. The beneficial anxiolytic effects of omega-3 PUFAs might be stronger in participants with specific clinical diagnoses than in those without specific clinical conditions. Larger and well-designed clinical trials should be performed with high-dose omega-3 PUFAs, provided as monotherapy and as adjunctive treatment to standard therapy.
Because of the preliminary state of knowledge on the effects of omega-3 PUFA treatment on anxiety, we decided to include as many studies as possible and not to set further limitations on specific characteristics, such as length of study, diagnosis, omega-3 PUFA dosage, omega-3 PUFA preparation (EPA to DHA ratio), rated anxiety coding scale, or type of control. Therefore, we chose to make the inclusion criteria as broad as possible to avoid missing any potentially eligible studies. The inclusion criteria included clinical trials in humans (randomized or nonrandomized), studies investigating the effects of omega-3 PUFA treatment on anxiety symptoms, and formal published articles in peer-reviewed journals. The clinical trials could be placebo controlled or non–placebo controlled. The target participants could include healthy volunteers, patients with psychiatric illness, and patients with physical illnesses other than psychiatric illnesses. The exclusion criteria included case reports or series, animal studies or review articles, and studies not investigating the effects of omega-3 PUFA treatment on anxiety symptoms. We did not set any language limitation to increase the number of eligible articles. Figure 1 shows the literature search and screening protocol.
After just seven days, those supplementing with krill had their CRP levels reduced by 19.3%, while in the placebo group, CRP levels rose by 15.7%. Even more impressive, the krill benefit was long-lasting. The krill group’s CRP levels continued to fall by 29.7% at 14 days, and 30.9% at 30 days. More importantly from the patients’ points of view, the krill oil supplement reduced pain scores by 28.9%, reduced stiffness by 20.3%, and reduced functional impairment by 22.8%.
Dioxins and PCBs may be carcinogenic at low levels of exposure over time. These substances are identified and measured in one of two categories, dioxin-like PCBs and total PCBs. While the U.S. FDA has not set a limit for PCBs in supplements, the Global Organization for EPA and DHA (GOED) has established a guideline allowing for no more than 3 picograms of dioxin-like PCBs per gram of fish oil. In 2012, samples from 35 fish oil supplements were tested for PCBs. Trace amounts of PCBs were found in all samples, and two samples exceeded the GOED‘s limit.[52] Although trace amounts of PCBs contribute to overall PCB exposure, Consumerlab.com claims the amounts reported by tests it ordered on fish oil supplements are far below those found in a single typical serving of fish.[52]
Today the only Food and Drug Administration (FDA)-approved form of dietary omega-3 FA supplement is Lovaza (omega-3-acid ethyl esters; GlaxoSmithKline), which contains 375 mg of DHA and 465 mg of EPA per 1 g capsule. The myriad of dietary supplements of fish oil, including Kosher capsules, vary from comparable content to insignificant amounts, and for the most part can include other fats and cholesterols. In comparison, to achieve approximately 1 g of EPA and DHA in a meal, 12 ounces of canned light tuna, 2 to 3 ounces of sardines, 1.5 to 2.5 ounces of farmed Atlantic salmon, or 20 ounces of farmed catfish must be consumed (Table 1).65 Unfortunately, potentially high levels of harmful pollutants offset this source of omega-3 FA. The FDA action level for unacceptably high mercury content in fish is 1.0 μg/g. The mercury level in most fish is at or below 0.1 μg/g, but tilefish, swordfish, and king mackerel have high levels of mercury. The majority of fish species also contain <100 ng/g of polychlorinated biphenyls, which is below the FDA action level of 2000 ng/g. Dioxins, which do not have FDA action levels, are present in the majority of marine life.66
56. Davidson MH, Stein EA, Bays HE, et al. COMBination of prescription Omega-3 with Simvastatin (COMBOS) Investigators. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007;29:1354–1367. [PubMed]
The American Heart Association (AHA) has made recommendations for EPA and DHA due to their cardiovascular benefits: individuals with no history of coronary heart disease or myocardial infarction should consume oily fish two times per week; and "Treatment is reasonable" for those having been diagnosed with coronary heart disease. For the latter the AHA does not recommend a specific amount of EPA + DHA, although it notes that most trials were at or close to 1000 mg/day. The benefit appears to be on the order of a 9% decrease in relative risk.[106] The European Food Safety Authority (EFSA) approved a claim "EPA and DHA contributes to the normal function of the heart" for products that contain at least 250 mg EPA + DHA. The report did not address the issue of people with pre-existing heart disease. The World Health Organization recommends regular fish consumption (1-2 servings per week, equivalent to 200 to 500 mg/day EPA + DHA) as protective against coronary heart disease and ischaemic stroke.
The omega-3 index is also important because it is inversely related to one’s omega-6 to omega-3 ratio — another important measurement (3). A lower omega-6/omega-3 ratio (meaning, you consume a balanced amount of these two fatty acid families) is associated with a reduced risk of many chronic diseases, including cardiovascular disease, cancer, and autoimmune disease, to name a few (4). Of course, most people get far too much omega-6 and too little omega-3, thanks to the plethora of highly processed foods in the Western diet.
Fish oil has only a small benefit on the risk of premature birth.[43][44] A 2015 meta-analysis of the effect of omega−3 supplementation during pregnancy did not demonstrate a decrease in the rate of preterm birth or improve outcomes in women with singleton pregnancies with no prior preterm births.[45] A systematic review and meta-analysis published the same year reached the opposite conclusion, specifically, that omega−3 fatty acids were effective in "preventing early and any preterm delivery".[46]
It helps maintain a good luster of the hair because omega-3 has growth stimulating properties since it provides nourishment to the follicles. It aids in the development of hair and in preventing hair loss. A good supply of protein is also necessary for hair growth, and since most fish varieties are rich in protein, eating fish helps to keep hair healthy.

A scientific review in 2014 evaluated study findings on omega-3 intake in relation to the prevention and treatment of breast cancer, the most prevalent cancer among women. The review found that EPA and DHA, as well as ALA, can differentially inhibit breast tumor development. According to this review, there is solid evidence to support the use of omega-3s as “a nutritional intervention in the treatment of breast cancer to enhance conventional therapeutics, or potentially lowering effective doses.” (16) Additionally, a 2016 study found that “very high fish consumption in early adulthood to midlife may be associated with decreased risk of breast cancer.” (17)
There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.
If you think you may have a medical emergency, call your healthcare provider or 911 immediately. Any mention of products or services is not meant as a guarantee, endorsement, or recommendation of the products, services, or companies. Reliance on any information provided is solely at your own risk. Please discuss any options with your healthcare provider.

Dr. Holub has provided the questions and answers for several emails he has received over the years regarding omega-3 fatty acids for health.  If you have a question regarding omega-3, it is likely that Dr. Holub has answered it either here in this section, or elsewhere on the site (e.g. check the scientific overview section for general questions regarding omega-3).  To quickly find your answer, please use our search bar located in the top right section of this page.  After searching our site, and  you still cannot find the answer to your question, we invite you to ask Dr. Holub a question here.

Most vegan omega-3 supplements are made from seaweed, one of very few plant sources of both EPA and DHA. If you’d rather skip the pills, the real thing provides omega-3s as well as vitamin K, vitamin C, niacin, folate, and choline. Seaweed can be eaten raw (look for it at your local organic or Asian market) or dried — try Annie Chun’s Organic Seaweed Snack, which comes in individual packs and is available in several delicious flavors.
At SelfHacked, it’s our goal to offer our readers all the tools possible to get optimally healthy. When I was struggling with chronic health issues I felt stuck because I didn’t have any tools to help me get better. I had to spend literally thousands of hours trying to read through studies on pubmed to figure out how the body worked and how to fix it.
If you’ve been paying attention to health headlines over the last few decades, you’ve likely heard about essential fatty acids (EFAs) — specifically omega-3s and omega-6s. These nutrients play many vital roles in supporting our overall health, including increasing nutrient absorption, ensuring proper growth and development of the brain and nervous system, and reducing the risk of chronic illnesses, such as heart disease.  Click here for a guide to understanding omega-3 and omega-6 fatty acids and how they influence your health.
Gajos, G., Zalewski, J., Rostoff, P., Nessler, J., Piwowarska, W., & Undas, A. (2011, May 26). Reduced thrombin formation and altered fibrin clot properties induced by polyunsaturated omega-3 fatty acids on top of dual antiplatelet therapy in patients undergoing percutaneous coronary intervention (OMEGA-PCI Clot). Arteriosclerosis, Thrombosis, and Vascular Biology 111.228593. Retrieved from http://atvb.ahajournals.org/content/early/2011/05/26/ATVBAHA.111.228593.abstract
Many studies show that eating fatty fish and other types of seafood as part of a healthy eating pattern helps keep your heart healthy and helps protect you from many heart problems. Getting more EPA or DHA from foods lowers triglyceride levels, for example. Omega-3 dietary supplements can also help lower triglyceride levels, but it is not clear whether omega-3 supplements protect you from most heart problems.
Brain function and vision rely on dietary intake of DHA to support a broad range of cell membrane properties, particularly in grey matter, which is rich in membranes.[61][62] A major structural component of the mammalian brain, DHA is the most abundant omega−3 fatty acid in the brain.[63] It is under study as a candidate essential nutrient with roles in neurodevelopment, cognition, and neurodegenerative disorders.[61]
Fish oil can be obtained from eating fish or by taking supplements. Fish that are especially rich in the beneficial oils known as omega-3 fatty acids include mackerel, herring, tuna, salmon, cod liver, whale blubber, and seal blubber. Two of the most important omega-3 fatty acids contained in fish oil are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Make sure to see separate listings on EPA and DHA, as well as Cod Liver Oil, and Shark Liver Oil.
×