Your retina contains quite a bit of DHA, making it necessary for that fatty acid to function. (90) The National Eye Institute, part of the National Institutes of Health, concludes that there is “consistent evidence” suggesting long-chain polyunsaturated fatty acids DHA and EPA are necessary for retinal health and may help protect the eyes from disease. (91)
Secondly, when we consume EPA, it inhibits the production of AA from DGLA and also competes with AA for uptake into cell membranes and can therefore lower the amount of AA in membranes by literally saturating the cell – in essence, it takes up more of the available ‘space’ and displaces AA. When there is less AA present, there is a reduced capacity for it to produce inflammatory products.
The effect of fish oil consumption on prostate cancer is controversial,[28][29] as one study showed decreased risk with higher blood levels of DPA, whereas another reported increased risk of more aggressive prostate cancer with higher blood levels of combined EPA and DHA.[30] Some evidence indicated an association between high blood levels of omega-3 fatty acids and an increased prostate cancer risk.[31]
AD is a devastating disease for which there are limited treatment options and no cure. Memory loss is an early indicator of the disease, which is progressive, and leads to the inability of the patient to care for him- or herself and eventually to death (47). Currently, the number of individuals with AD is estimated to be 26.6 million and is expected to increase to 106.2 million by 2050 (48). There have been many studies conducted regarding the use of omega-3 fatty acid supplementation and AD (Table 2). DHA is present in large amounts in neuron membrane phospholipids, where it is involved in proper function of the nervous system, which is why it is thought to play a role in AD (49). A case-control study consisting of 148 patients with cognitive impairment [Mini-Mental State Examination (MMSE) score <24] and 45 control patients (MMSE score ≥24) showed that serum cholesteryl ester-EPA and -DHA levels were significantly lower (P < 0.05 and P < 0.001, respectively) in all MMSE score quartiles of patients with AD compared with control values (49). Another study found that a diet characterized by higher intakes of foods high in omega-3 fatty acids (salad dressing, nuts, fish, tomatoes, poultry, cruciferous vegetables, fruits, dark and green leafy vegetables), and a lower intake of foods low in omega-3 fatty acids (high-fat dairy products, red meat, organ meat, butter) was strongly associated with a lower AD risk (50). Image analysis of brain sections of an aged AD mouse model showed that overall plaque burden was significantly reduced by 40.3% in mice with a diet enriched with DHA (P < 0.05) compared with placebo. The largest reductions (40–50%) were seen in brain regions that are thought to be involved with AD, the hippocampus and parietal cortex (51). A central event in AD is thought to be the activation of multiple inflammatory cells in the brain. Release of IL-1B, IL-6, and TNF α from microglia cells may lead to dysfunction of the neurons in the brain (52). In 1 study, AD patients treated with EPA+DHA supplementation increased their plasma concentrations of EPA and DHA, which were associated with reduced release of inflammatory factors IL-1B, IL-6, and granulocyte colony–stimulating factor from peripheral blood mononuclear cells (53).
The systematic review suggests that eating more ALA through food or supplements probably has little or no effect on cardiovascular deaths or deaths from any cause. However, eating more ALA probably reduces the risk of heart irregularities from 3.3 to 2.6%. The review team found that reductions in cardiovascular events with ALA were so small that about 1000 people would need to increase consumption of ALA for one of them to benefit. Similar results were found for cardiovascular death. They did not find enough data from the studies to be able to measure the risk of bleeding or blood clots from using ALA.
Several other analyses of the evidence have been done in the last few years (2012 or later), and like the 2018 analysis and the AHRQ report, most found little or no evidence for a protective effect of omega-3 supplements against heart disease. However, some earlier analyses suggested that omega-3s could be helpful. The difference between the newer conclusions and the older ones may reflect two changes over time: 

Some studies suggest that people who get higher amounts of omega-3s from foods and dietary supplements may have a lower risk of breast cancer and perhaps colorectal cancer. More research is needed to confirm this possible link. Whether omega-3s affect the risk of other cancers is not clear. Clinical trials to examine this possibility are in progress.
Bemelmans, W. J., Broer, J., Feskens, E. J., Smit, A. J., Muskiet, F. A., Lefrandt, J. D., Bom, V. J., May, J. F., and Meyboom-de Jong, B. Effect of an increased intake of alpha-linolenic acid and group nutritional education on cardiovascular risk factors: the Mediterranean Alpha-linolenic Enriched Groningen Dietary Intervention (MARGARIN) study. Am J Clin Nutr 2002;75(2):221-227. View abstract.
This constant sweeping motion of DHA also causes the breakup of lipid rafts in membranes (8). Disruption of these islands of relatively solid lipids makes it more difficult for cancer cells to continue to survive and more difficult for inflammatory cytokines to initiate the signaling responses to turn on inflammatory genes (9). In addition, the greater spatial characteristics of DHA increase the size of LDL particles to a greater extent compared to EPA. As a result, DHA helps reduce the entry of these enlarged LDL particles into the muscle cells that line the artery thus reducing the likelihood of developing atherosclerotic lesions (10). Thus the increased spatial territory swept out by DHA is good news for making certain areas of membranes more fluid or lipoprotein particles larger, even though it reduces the benefits of DHA in competing with AA for key enzymes important in the development of cellular inflammation.
According to research conducted at Harvard University, omega-3 fatty acid deficiency is officially one of the top 10 causes of death in America, claiming the lives of up to 96,000 people each year. Out of the 12 dietary, lifestyle and metabolic risk factors examined in the study, omega-3 fatty acid deficiency ranked as the sixth highest killer of Americans. (1) These deaths are considered preventable since getting enough omega 3-fatty acids in your diet can ward off this now common cause of death, and fish oil benefits omega-3 intake as a potent omega-3 source.
Why would someone foul a perfectly good box of rotini with omega 3 oils? This is based on the belief that omega 3 fatty acids reduce heart disease and vascular risk, probably through reducing blood pressure and cholesterol. This is a plausible claim, but as we see over and over again in medicine, plausibility (while nice) is insufficient as a basis for clinical claims.

In your final paragraph, you suggest that a ratio of 2:1 EPA/DHA maybe best for reducing inflammation. Are you suggesting using two separate products to obtain that ratio? I can't see how it is achieveable through standard omega-3 products. Good fish oil brands are typically 60% or higher EPA, but never reach a 2:1 ratio in my product searches. According to case studies (link below), 1 gram of EPA per day (60% or more of the total omega-3 content) is sufficient and the highest efficacy.


Marchioli, R., Barzi, F., Bomba, E., Chieffo, C., Di, Gregorio D., Di, Mascio R., Franzosi, M. G., Geraci, E., Levantesi, G., Maggioni, A. P., Mantini, L., Marfisi, R. M., Mastrogiuseppe, G., Mininni, N., Nicolosi, G. L., Santini, M., Schweiger, C., Tavazzi, L., Tognoni, G., Tucci, C., and Valagussa, F. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione. Circulation 4-23-2002;105(16):1897-1903. View abstract.
Research conducted at the Louisiana State University has shown that fatty acids are effective in treating Alzheimer’s disease. Since fish oil is one of the best sources of essential fatty acids, including EPA and DHA, it helps in the treatment of Alzheimer’s disease. More research conducted at the University of California in Los Angeles (UCLA) validates the usefulness of fish oil as a possible remedy for the disease. The Alzheimer’s Association recommends fish containing a higher content of omega-3 fatty acids to patients since it acts as a defense against Alzheimer’s disease and dementia.
Cardiovascular disease is the cause of 38% of all deaths in the United States, many of which are preventable (28). Chronic inflammation is thought to be the cause of many chronic diseases, including cardiovascular disease (29). EPA and DHA are thought to have antiinflammatory effects and a role in oxidative stress (30) and to improve cellular function through changes in gene expression (31). In a study that used human blood samples, EPA+DHA intake changed the expression of 1040 genes and resulted in a decreased expression of genes involved in inflammatory and atherogenesis-related pathways, such as nuclear transcription factor κB signaling, eicosanoid synthesis, scavenger receptor activity, adipogenesis, and hypoxia signaling (31). Circulating markers of inflammation, such as C-reactive protein (CRP), TNF α, and some ILs (IL-6, IL-1), correlate with an increased probability of experiencing a cardiovascular event (32). Inflammatory markers such as IL-6 trigger CRP to be synthesized by the liver, and elevated levels of CRP are associated with an increased risk of the development of cardiovascular disease (33). A study of 89 patients showed that those treated with EPA+DHA had a significant reduction in high-sensitivity CRP (66.7%, P < 0.01) (33). The same study also showed a significant reduction in heat shock protein 27 antibody titers (57.69%, P < 0.05), which have been shown to be overexpressed in heart muscle cells after a return of blood flow after a period of ischemia (ischemia-reperfusion injury) and may potentially have a cardioprotective effect (33).
Several other analyses of the evidence have been done in the last few years (2012 or later), and like the 2018 analysis and the AHRQ report, most found little or no evidence for a protective effect of omega-3 supplements against heart disease. However, some earlier analyses suggested that omega-3s could be helpful. The difference between the newer conclusions and the older ones may reflect two changes over time: 

Samsonov, M. A., Vasil'ev, A. V., Pogozheva, A. V., Pokrovskaia, G. R., Mal'tsev, G. I., Biiasheva, I. R., and Orlova, L. A. [The effect of a soy protein isolate and sources of polyunsaturated omega-3 fatty acids in an anti-atherosclerotic diet on the lipid spectrum of blood serum and immunological indicators in patients with ischemic heart disease and hypertension]. Vopr.Med Khim. 1992;38(5):47-50. View abstract.
The most widely available dietary source of EPA and DHA is oily fish, such as salmon, herring, mackerel, anchovies, menhaden, and sardines. Oils from these fish have a profile of around seven times as much omega−3 as omega−6. Other oily fish, such as tuna, also contain n-3 in somewhat lesser amounts. Consumers of oily fish should be aware of the potential presence of heavy metals and fat-soluble pollutants like PCBs and dioxins, which are known to accumulate up the food chain. After extensive review, researchers from Harvard's School of Public Health in the Journal of the American Medical Association (2006) [110] reported that the benefits of fish intake generally far outweigh the potential risks. Although fish are a dietary source of omega−3 fatty acids, fish do not synthesize them; they obtain them from the algae (microalgae in particular) or plankton in their diets.[111] In the case of farmed fish, omega-3 fatty acids is provided by fish oil; In 2009, 81% of the global fish oil production is used by aquaculture.[112]
We’ve written about the dose necessary to achieve measurable benefits before. However, a person’s actual omega-3 intake can be tricky to estimate. Even if you eat at least two servings of fatty fish per week, as the American Heart Association recommends (10), your fish might contain more or less omega-3s depending on the fish species, the time of year, and how you cook it. Even taking fish oil supplements isn’t always straightforward, as dose can be impacted by numerous bioavailability factors, as well as genetics, age, gender, medication-use and lifestyle.

If you have a bleeding disorder, bruise easily or take blood-thinning medications, you should use fish oil supplements with extra caution since large doses of omega-3 fatty acids can increase bleeding risk. This bleeding risk also applies to people with no history of bleeding disorders or current medication usage. If you have type 2 diabetes, you should only use fish oil supplements under your doctor’s supervision. Individuals with type 2 diabetes can experience increases in fasting blood sugar levels while taking fish oil supplements.
Krauss-Etschmann, S., Hartl, D., Rzehak, P., Heinrich, J., Shadid, R., Del, Carmen Ramirez-Tortosa, Campoy, C., Pardillo, S., Schendel, D. J., Decsi, T., Demmelmair, H., and Koletzko, B. V. Decreased cord blood IL-4, IL-13, and CCR4 and increased TGF-beta levels after fish oil supplementation of pregnant women. J.Allergy Clin.Immunol. 2008;121(2):464-470. View abstract.
Fish oil contamination even among “molecularly distilled” brands and those aimed at children is a widespread problem. One study in California tested 10 common brands and found PCBs — toxic industrial pollutants that have contaminated our oceans — in all of them. Some had 70 times the PCBs of other ones and 240x the toxicity. In another study, researchers tested 13 over-the-counter children’s dietary supplements containing fish oil for PCBs. PCBs were detected in all products. Our family takes algae-derived omega-3 (DHA/EPA) capsules, which are bioequivalent to fish oil capsules. Algae are actually the source where fish get their omega-3 content, so we skip the contaminated middle man (or, fish, in this case) and the neurotoxins that come with them given how polluted our oceans are now. I highly recommend parents do their research on what studies show about fish oil contamination and not just trust the labels, as well as consider algae-derived omega-3 capsules as more healthful bioequivalent to fish oil.

Two psychiatrists (P.-T.T. and T.-Y.C.) separately performed a systematic literature search of the PubMed, Embase, ProQuest, ScienceDirect, Cochrane Library, ClinicalKey, Web of Science, and ClinicalTrials.gov databases to March 4, 2018. Because we presumed some clinical trials would use investigating scales for some other mood symptoms but also contain symptoms of anxiety, we tried to use some nonspecific medical subject heading terms to include those clinical trials. Therefore, we used the following keywords: omega-3, eicosapentaenoic acid, EPA, DHA, or docosahexaenoic acid; and anxiety, anxiety disorder, generalized anxiety disorder, agoraphobia, panic disorder, or posttraumatic stress disorder. After removing duplicate studies, the same 2 authors screened the search results according to the title and abstract to evaluate eligibility. List of potentially relevant studies were generated for a full-text review. Any inconsistencies were discussed with a third author to achieve final consensus. To expand the list of potentially eligible articles, we performed a manual search of the reference lists of review articles in this area.12,38,39
Whilst EPA and DHA are both considered to be important regulators of immunity, platelet aggregation and inflammation, their health-influencing by-products arise from very different pathways and their effects in the body differ. DHA is the most abundant omega-3 fatty acid in cell membranes, present in all organs and most abundant in the brain and retina, playing an important structural role. EPA is present structurally only in minute quantities, always being utilised and under constant demand to be replaced. Whilst DHA provides mainly a structural role, it is becoming evident that EPA may be the dominant functional fatty acid out of the two in many areas of health and especially in inflammatory conditions.

Keck, P. E., Jr., Mintz, J., McElroy, S. L., Freeman, M. P., Suppes, T., Frye, M. A., Altshuler, L. L., Kupka, R., Nolen, W. A., Leverich, G. S., Denicoff, K. D., Grunze, H., Duan, N., and Post, R. M. Double-blind, randomized, placebo-controlled trials of ethyl-eicosapentanoate in the treatment of bipolar depression and rapid cycling bipolar disorder. Biol.Psychiatry 11-1-2006;60(9):1020-1022. View abstract.
Additional side effects of fish oil supplements which have been reported include headache, short-term memory loss, depression, somatic disorders, and increased risk of colon cancer, nasopharyngitis, worsening of asthma symptoms, hemolytic anemia, decreased physical activity, increased appetite, a general uncomfortable feeling or increased blood pressure. The percentage of users that develop these side effects is not known. If these side effects become severe it is recommended that you stop using fish oil supplements.
The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), found in plant oils, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), both commonly found in marine oils.[2] Marine algae and phytoplankton are primary sources of omega−3 fatty acids. Common sources of plant oils containing ALA include walnut, edible seeds, clary sage seed oil, algal oil, flaxseed oil, Sacha Inchi oil, Echium oil, and hemp oil, while sources of animal omega−3 fatty acids EPA and DHA include fish, fish oils, eggs from chickens fed EPA and DHA, squid oils, and krill oil. Dietary supplementation with omega−3 fatty acids does not appear to affect the risk of death, cancer or heart disease.[4][5] Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes or any vascular disease outcomes.[6][7]

Sorgi, P. J., Hallowell, E. M., Hutchins, H. L. & Sears, B. (2007, January 17). Effects of an open-label pilot study with high-dose EPA/DHA concentrates on plasma phospholipids and behavior in children with attention deficit hyperactivity disorder. Nutrition Journal 6(16). Retrieved from http://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-6-16
When taking fish oil, more is not always better. Remember that you want it to stay in a balanced ratio with omega-6 fats. For most people, I recommend a 1,000-milligram dose of fish oil daily as a good amount and the most scientifically studied dosage. I highly recommend not taking more than that unless directed to under the supervision of a doctor.
Fish oils might slow blood clotting. Taking fish oils along with medications that also slow clotting might increase the chances of bruising and bleeding.Some medications that slow blood clotting include aspirin, clopidogrel (Plavix), diclofenac (Voltaren, Cataflam, others), ibuprofen (Advil, Motrin, others), naproxen (Anaprox, Naprosyn, others), dalteparin (Fragmin), enoxaparin (Lovenox), heparin, warfarin (Coumadin), and others.
×