Maternal nutrition guidelines have always stressed a diet including sufficient caloric and protein requirements, but recently fatty acids have also been deemed important (17). This is partially due to the fact that EPA and DHA supplementation during pregnancy has been associated with multiple benefits for the infant (Table 1). During pregnancy, the placenta transfers nutrients, including DHA, from the mother to the fetus (18). The amount of omega-3 fatty acid in the fetus is correlated with the amount ingested by the mother, so it is essential that the mother has adequate nutrition (19). The 2010 U.S. Department of Health and Human Services dietary guidelines recommend that women who are pregnant or breastfeeding should “consume 8 to 12 ounces of seafood per week from a variety of seafood types” (12). Ingesting 8–12 oz of seafood per week, depending on the type of fish, is equivalent to ∼300–900 mg EPA+DHA per day. Unfortunately, this amount is not being met by most mothers in the United States and Canada, which means that infants many not be receiving adequate amounts of these vital nutrients in the womb (20).
Unintended weight loss is a problem that many patients with AD may face, and EPA+DHA supplementation has had a positive effect on weight gain in patients with AD. In a study using EPA+DHA supplementation, patients' weight significantly increased by 0.7 kg in the EPA+DHA treatment group at 6 mo (P = 0.02) and by 1.4 kg at 12 mo (P < 0.001) and was observed mainly in patients with a BMI <23 at the study start (54). This means that those patients with a lower BMI preferentially gained weight compared with those patients already with a higher BMI.
Jump up ^ Ilse Schreiber: Die Schwestern aus Memel (1936), quoted, and extract translated in: Strzelczyk, Florentine (2014). "16: 'Fighting against Manitou': German Identity and Ilse Schreiber's Canada Novels Die Schwestern aus Memel (1936) and Die Flucht in Paradies (1939)". In McFarland, Rob; James, Michelle Stott. Sophie Discovers Amerika: German-Speaking Women Write the New World. Studies in German Literature Linguistics and Culture. 148. Boydell & Brewer. p. 207. ISBN 9781571135865. Hoffentlich zogen die Eltern in eine Gegend, wo es recht viele Eingeborene gab. Indianer, die nur von Jagd und Fischfang leben. Ach, und womöglich Eskimos, die sich mit Tran einschmieren, um sich gegen die Kälte zu schützen und rohes Fleisch essen [...]. [She hoped her parents would move to an area where there were many aboriginals. Indians who live solely by hunting and fishing. Oh, and if possible Eskimos who smear themselves with fish oil to protect themselves from the cold, and who eat raw meat.]
This article had several limitations and the findings need to be considered with caution. First, our participant population is too heterogeneous because of our broad inclusion criteria, which might be true if considering current Diagnostic and Statistical Manual of Mental Disorders or International Classification of Diseases diagnostic systems. However, the novel Research Domain Criteria consider anxiety to be one of the major domains in Negative Valence Systems. Trials should be conducted in populations in which anxiety is the main symptom irrespective of the presence or absence of diagnosis of anxiety disorder. Second, because of the limited number of recruited studies and their modest sample sizes, the results should not be extrapolated without careful consideration. Third, the significant heterogeneity among the included studies (Cochran Q, 178.820; df, 18; I2, 89.934%; P < .001) with potential influence by some outlier studies, such as the studies by Sohrabi et al56 and Yehuda et al,61 would be another major concern. Therefore, clinicians should pay attention to this aspect when applying the results of the current meta-analysis to clinical practice, particularly when considering the subgroups of these 2 studies (ie, subgroups with specific clinical diagnoses, with <2000 mg/d, with EPA <60%, and with placebo-controlled trials).

The short answer is no. There are many websites which advise people to stop eating vegetable oils and switch to fish oil in order to increase their intake of omega-3 fatty acids. Fish oil is a good source of omega-3 essential fatty acids and should be consumed, but that doesn’t necessarily mean that one should completely replace vegetable oils with fish oil.
Because patients with depression experience rapid shrinking of their hippocampus, many strategies for relieving depression focus on increasing new brain cell growth in that specific area of the brain.23 There’s now evidence that increasing omega-3 intake, especially DHA, may be an effective way of treating or preventing depression, partly by protecting the hippocampus from further shrinkage.23
Fish oil has the ability to treat Attention Deficit Hyperactivity Disorder (ADHD) due to its high concentration of fatty acids. For children suffering from hyperactivity, dyslexia, dyspraxia, inability to complete tasks, emotional instability, wavering attitude, poor coordination, short attention span, short-term memory weakness, low concentration, tendency to interrupt others, recklessness, hastiness, impetuosity, impulsiveness, low IQ, or learning disorders, fish oil is a proven remedy. Research conducted at the University of South Australia and CSIRO has shown that when children suffering from ADHD were given doses of fish oil and evening primrose capsules for 15 weeks, they showed significant improvements in their behavior. Since, human brain consists of about 60% fats, especially essential fatty acids such as omega-3 and omega-6, it helps to improve the functions of the brain.
We’ve already seen that fish oil can help with depression-like symptoms in rats, but what about people? A study published in the journal Nutritional Neuroscience evaluated the effects of fish oil supplementation on prefrontal metabolite concentrations in adolescents with major depressive disorder. Researchers found that there was a 40 percent decrease in major depression disorder symptoms in addition to marked improvements in amino acid and nutrition content in the brain, specifically, the right dorsolateral prefrontal cortex. (21)
Of great clinical importance, EPA and DHA supplementation during pregnancy has been associated with longer gestation and increased concentrations of EPA and DHA in fetal tissues (21). In 2005, preterm births accounted for 12.7% of all births in the United States, increasing the likelihood of health complications (22). Carrying a baby to term is very important because prematurity is the cause of various infant diseases and can lead to death; preterm delivery is an underlying factor for 85% of the deaths of normally formed infants (23). One mechanism by which EPA and DHA may decrease the incidence of preterm birth is by decreasing prostaglandin E2 and prostaglandin F2α production, therefore reducing inflammation within the uterus, which could be associated with preterm labor (21, 24). Several studies investigated EPA and DHA intake during pregnancy and its correlation with longer gestation. Conclusions were that EPA+DHA supplementation during pregnancy delayed the onset of delivery to term or closer to term; however, supplementation did not delay delivery to the point of being post-term (20, 23, 25). This supports the evidence that EPA+DHA ingestion leads to optimal pregnancy length. EPA+DHA supplementation reduced the HR of preterm delivery by 44% (95% CI: 14–64%) in those who consumed relatively low amounts of fish and 39% (95% CI: 16–56%) in those who consumed medium amounts of fish; however, a level of statistical significance was not met (P = 0.10) (23). The Judge et al. (20) study found that women who had DHA supplementation from gestation week 24 until full-term delivery carried their infants significantly (P = 0.019) longer than did the women in the placebo group. One study found that DHA supplementation after gestation week 21 led to fewer preterm births (<34 wk of gestation) in the DHA group compared with the control group (1.09% vs. 2.25%; adjusted RR, 0.49; 95% CI: 0.25–0.94; P = 0.03). Also, mean birth weight was 68 g heavier (95% CI: 23–114 g; P = 0.003) and fewer infants were of low birth weight in the DHA group compared with the control group (3.41% vs. 5.27%; adjusted RR, 0.65; 95% CI: 0.44–0.96; P = 0.03) (25).
Other suspected health benefits of omega-3s and fish are less well established and need further study. They include suggestions of a reduced risk of breast cancer, colorectal cancer and possibly advanced prostate cancer, all related to eating fish rather than taking supplements. Some observational studies have associated omega-3s to a lower risk of cognitive decline, Alzheimer’s disease and dementia, as well as age-related macular degeneration.
Research conducted by Professor Peter Howe at the University of South Australia has shown that fish oil improves the efficacy of exercise in attempts to reduce weight. Volunteers who were given fish oil in their diet showed greater weight loss as compared to those who did not regularly consume it. Fish oil contains omega-3 fatty acids, which help to promote the weight loss, so a combination of physical workout and intake of this oil helps in reducing body fat significantly faster.
Additionally, total polychlorinated biphenyl (PCB) content was measured in every product. All product recorded PCB levels within the Food and Drug Administration’s (FDA) 2 PPM limit for the edible parts of fish/shellfish as well as the stricter standards enacted by California’s Proposition 65, which requires products containing greater than 0.09 PPM of PCB content to bear a cancer warning. The worst offender, Now Foods Ultra Omega-3 Fish Oil, recorded 0.04 PPM of PCB content.
Dr. Holub has provided the questions and answers for several emails he has received over the years regarding omega-3 fatty acids for health.  If you have a question regarding omega-3, it is likely that Dr. Holub has answered it either here in this section, or elsewhere on the site (e.g. check the scientific overview section for general questions regarding omega-3).  To quickly find your answer, please use our search bar located in the top right section of this page.  After searching our site, and  you still cannot find the answer to your question, we invite you to ask Dr. Holub a question here.
Age-related macular degeneration (AMD) is an eye disease that can cause vision loss in older people. Two major National Institutes of Health (NIH)-sponsored studies, called Age-Related Eye Disease Study (AREDS) and Age-Related Eye Disease Study 2 (AREDS2), showed that dietary supplements containing specific combinations of vitamins, antioxidants, and zinc helped slow the progression of AMD in people who were at high risk of developing the advanced stage of this disease. AREDS2, which had more than 4,000 participants and was completed in 2013, also tested EPA and DHA. The results showed that adding these omega-3s to the supplement formulation didn’t provide any additional benefits. Other, smaller studies of omega-3 supplements also haven’t shown them to have a beneficial effect on the progression of AMD. 
Due to the anticipated heterogeneity, a random-effects meta-analysis was chosen rather than a fixed-effects meta-analysis because random-effects modeling is more stringent and incorporates an among-study variance in the calculations. The entire meta-analysis procedure was performed on the platform of Comprehensive Meta-analysis statistical software, version 3 (Biostat). Under the preliminary assumption that the scales for anxiety symptoms are heterogeneous among the recruited studies, we chose Hedges g and 95% confidence intervals to combine the effect sizes, in accordance with the manual of the Comprehensive Meta-analysis statistical software, version 3. Regarding the interpretation of effect sizes, we defined Hedges g values 0 or higher as a better association of treatment with reduced anxiety symptoms of omega-3 PUFAs than in controls. For each analysis, a 2-tailed P value less than .05 was considered to indicate statistical significance. When more than 1 anxiety scale was used in a study, we chose the one with the most informative data (ie, mean and standard deviation [SD] before and after treatment). We entered the primary outcome provided in the included articles or obtained from the original authors. As for the variance imputation, we mainly chose the mean and SD before and after treatment. Later, we entered the mean and SD and calculated the effect sizes based on the software option, standardized by post score SD. In the case of studies with 2 active treatment arms, we merged the 2 active treatment arms into 1 group. If these 2 active treatment arms belonged to different subgroups (ie, different PUFA dosage subgroups), we kept them separate. Regarding the numbers of participants counted, we chose intention-to-treat as our priority. If there were insufficient data in the intention to treat group (ie, some studies only provided the changes in anxiety severity in those participants completing trials), we chose instead the per-protocol numbers of participants.
The differing actions of EPA and DHA, together with their competitive uptake, help to explain why studies that attempt to use standard fish oil therapeutically (where DHA and EPA are combined, in a natural ratio of approximately 1.5:1) are either less beneficial than expected, or even completely ineffective. Standard EPA/DHA fish oils are more suitable for everyday wellbeing, to compensate for a lack of fish in the diet and to meet a suggested intake.
Thusgaard, M., Christensen, J. H., Morn, B., Andersen, T. S., Vige, R., Arildsen, H., Schmidt, E. B., and Nielsen, H. Effect of fish oil (n-3 polyunsaturated fatty acids) on plasma lipids, lipoproteins and inflammatory markers in HIV-infected patients treated with antiretroviral therapy: a randomized, double-blind, placebo-controlled study. Scand.J.Infect.Dis. 2009;41(10):760-766. View abstract.

Harper, M., Thom, E., Klebanoff, M. A., Thorp, J., Jr., Sorokin, Y., Varner, M. W., Wapner, R. J., Caritis, S. N., Iams, J. D., Carpenter, M. W., Peaceman, A. M., Mercer, B. M., Sciscione, A., Rouse, D. J., Ramin, S. M., and Anderson, G. D. Omega-3 fatty acid supplementation to prevent recurrent preterm birth: a randomized controlled trial. Obstet Gynecol 2010;115(2 Pt 1):234-242. View abstract.

Marine and freshwater fish oil vary in contents of arachidonic acid, EPA and DHA.[15] The various species range from lean to fatty and their oil content in the tissues has been shown to vary from 0.7% to 15.5%.[16] They also differ in their effects on organ lipids.[15] Studies have revealed that there is no relation between total fish intake or estimated omega−3 fatty acid intake from all fish, and serum omega−3 fatty acid concentrations.[17] Only fatty fish intake, particularly salmonid, and estimated EPA + DHA intake from fatty fish has been observed to be significantly associated with increase in serum EPA + DHA.[17]
Jatoi, A., Rowland, K., Loprinzi, C. L., Sloan, J. A., Dakhil, S. R., MacDonald, N., Gagnon, B., Novotny, P. J., Mailliard, J. A., Bushey, T. I., Nair, S., and Christensen, B. An eicosapentaenoic acid supplement versus megestrol acetate versus both for patients with cancer-associated wasting: a North Central Cancer Treatment Group and National Cancer Institute of Canada collaborative effort. J.Clin.Oncol. 6-15-2004;22(12):2469-2476. View abstract.
Your concerns are very valid. The quality of commercially available omega-3 preparations can vary greatly. In our clinical trials we use preparations made by reputable manufacturers with high standards. We also have the preparations analyzed by 2 independent labs to confirm omega-3 content, impurities, and degree of oxidation, prior to initiating the study. While omega-3 fatty acids–like most nutrients–are ideally obtained through dietary practice, because many people may not enjoy omega-3 containing foods, supplements may be a good option for these individuals. Anyone who is interested in using an omega-3 preparation for treating a psychiatric condition should do so preferably under the supervision of a psychiatrist.
However, in both observational studies and controlled clinical trials, eating fish was shown to foster optimal development of a baby’s brain and nervous system, prompting advice that pregnant women and nursing mothers eat more fish rich in omega-3s while avoiding species that may contain mercury or other contaminants like PCBs sometimes found in freshwater fish.
Fish oil can be consumed in various ways such as capsules or can be included in daily meals. The dosage should not exceed 3 fish oil capsules per day. 1000mg of fish oil contains approximately 300mg omega-3 fatty acids so you can accordingly use the amount of fish oil in your meals. A daily intake of 3000mg or less is safe for all. Pregnant and lactating women can consume approximately 3200 mg per day.
It seems that infancy and childhood are some of the most important periods of time in a person’s life to get plenty omega-3s in their diet, probably because of the amount of long-chain fatty acids found in the brain and retina. It’s crucial for developing babies and children to get a good amount of DHA and EPA so their brains and eyes develop fully and properly. (78)
Omega 3 is a type of fat. Small amounts of omega 3 fats are essential for good health, and they can be found in the food that we eat. The main types of omega 3 fatty acids are; alpha­linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA).  ALA is normally found in fats from plant foods, such as nuts and seeds (walnuts and rapeseed are rich sources). EPA and DHA, collectively called long chain omega 3 fats, are naturally found in fatty fish, such as salmon and fish oils including cod liver oil.
Hernandez, D., Guerra, R., Milena, A., Torres, A., Garcia, S., Garcia, C., Abreu, P., Gonzalez, A., Gomez, M. A., Rufino, M., Gonzalez-Posada, J., Lorenzo, V., and Salido, E. Dietary fish oil does not influence acute rejection rate and graft survival after renal transplantation: a randomized placebo-controlled study. Nephrol.Dial.Transplant. 2002;17(5):897-904. View abstract.
There are numerous omega-3 sources with varying proportions of EPA and DHA, and the balance of EPA and DHA in a supplement influences the actions of these fats in the body. For more information about the different types of omega-3 sources and which are most suited for your individual needs, read our page on the different types of omega-3 supplements
The randomized trials assessing the efficacy of fish oil supplementation on secondary prevention of CAD lend further evidence to the findings that fish oil may protect from sudden cardiac death.36 The Diet and Reinfarction Trial (DART),37 one of the first randomized trials of fish oil in CAD, has been interpreted as potential support for fish oil’s role in sudden death reduction because the primary outcome of all-cause mortality occurred within 2 months of the trial’s onset.38 After such a short time span, it was believed that atherosclerosis would not be altered and therefore another mechanism was reducing mortality. This was further supported by the fact that nonfatal MIs were not reduced. Although the actual modes of death other than CAD-related deaths were not documented, it has been postulated to be secondary to a reduction in sudden death.39 The Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico-Prevenzione40 (GISSI-Prevenzione) trial, a larger randomized trial of fish oil in CAD, has also been interpreted as evidence for fish oil’s protection against sudden death. Sudden death, however, was not a primary end point. Rather, the reduction in fatal events was driven by a reduction in cardiovascular death, which included coronary death, cardiac death, and sudden death.
Fish oil is also extremely beneficial for pregnant women and their children. Throughout pregnancy and also while breastfeeding, a woman’s omega-3 needs are even higher than usual. According to the American Pregnancy Association, most U.S. women are deficient in EPA and especially DHA going into pregnancy and get even more depleted during pregnancy, as the placenta supplies the fetus with DHA from the mother’s tissue. Omega-3 DHA is a critical building block of the fetal brain, eyes and nervous system. Once the baby is born, omega-3s continue to be vital to healthy brain development and immune function. (30)
Like its other leafy green counterparts, broccoli is a powerful source of ALA, one of the omega-3 fatty acids your body needs (but can’t make on its own). Broccoli is also high in fiber, zinc, and — surprisingly — protein, a must for any ADHD brain. If you or your child doesn’t like broccoli, try pairing it with a cheesy sauce or baking it into tots — try this simple recipe to get started.
The US National Institutes of Health lists three conditions for which fish oil and other omega-3 sources are most highly recommended: hypertriglyceridemia (high triglyceride level), preventing secondary cardiovascular disease, and hypertension (high blood pressure). It then lists 27 other conditions for which there is less evidence. It also lists possible safety concerns: "Intake of 3 grams per day or greater of omega-3 fatty acids may increase the risk of bleeding, although there is little evidence of significant bleeding risk at lower doses. Very large intakes of fish oil/omega-3 fatty acids may increase the risk of hemorrhagic (bleeding) stroke."[12]
Hamazaki, K., Syafruddin, D., Tunru, I. S., Azwir, M. F., Asih, P. B., Sawazaki, S., and Hamazaki, T. The effects of docosahexaenoic acid-rich fish oil on behavior, school attendance rate and malaria infection in school children--a double-blind, randomized, placebo-controlled trial in Lampung, Indonesia. Asia Pac.J Clin Nutr 2008;17(2):258-263. View abstract.
A study published in Brain Research shows how far-reaching fish oil can be for people with diabetes. Researches found that fish oil can help reduce the risk of diabetics from developing cognitive deficit because it protects the hippocampus cells from being destroyed. The study also showed that fish oil could help reduce oxidative stress, which plays a central role in the development of diabetes complications, both microvascular and cardiovascular. (22)
The strongest evidence for a beneficial effect of omega-3 fats has to do with heart disease. These fats appear to help the heart beat at a steady clip and not veer into a dangerous or potentially fatal erratic rhythm. (1) Such arrhythmias cause most of the 500,000-plus cardiac deaths that occur each year in the United States. Omega-3 fats also lower blood pressure and heart rate, improve blood vessel function, and, at higher doses, lower triglycerides and may ease inflammation, which plays a role in the development of atherosclerosis. (1)

For dry eye: Fish oil supplements providing EPA 360-1680 mg and DHA 240-560 mg have been used for 4-12 weeks. Some people used the specific product (PRN Dry Eye Omega Benefits softgels). A specific combination product containing EPA 450 mg, DHA 300 mg, and flaxseed oil 1000 mg (TheraTears Nutrition, Advanced Nutrition Research; Caruso’s Natural Health UltraMAX fish oil, Sydney, New South Wales, Australia) has been used once daily for 90 days.
×