Ramakrishnan, U., Stein, A. D., Parra-Cabrera, S., Wang, M., Imhoff-Kunsch, B., Juarez-Marquez, S., Rivera, J., and Martorell, R. Effects of docosahexaenoic acid supplementation during pregnancy on gestational age and size at birth: randomized, double-blind, placebo-controlled trial in Mexico. Food Nutr Bull 2010;31(2 Suppl):S108-S116. View abstract.

While fish for dinner is one way to get EPA and DHA, most people don’t eat the suggested two to three servings of oily fish per week to reap the benefits of omega-3s. What’s more, there are extremely few food sources, aside from fish, that naturally provide EPA and DHA. With all the benefits that can come from fish oil, it’s no surprise that these supplements are increasing in popularity.

An excessive dosage of fish oil can have adverse allergies and side effects on the body. Furthermore, fish oil can be problematic if you have certain conditions so it is necessary to consume fish oil supplements cautiously. Moreover, it can be consumed in various forms. These include eating the fish directly by baking, roasting, frying, grilling, broiling, or smoking it. It can also be consumed in the form of concentrated dietary supplements like liquid, tablet, capsule, pill, or soft gels. Also, there are various pharmaceutical grades of the oil. It is not necessary to constantly consume pharmaceutical-grade oil or even supplements. You should also consult your doctor to confirm the mode of consuming fish oil and the overall need for it in your diet.
To reach the required dose of EPA for treating certain conditions such as depression, CVD or CFS/ME you would need to take approximately 1-2 grams of ‘free EPA’ daily. Even with a concentrated omega-3 fish oil supplement, offering 180 mg excess EPA over DHA, this would require 10-20 capsules daily – significant in terms of volume and cost, and not efficient in terms of uptake in the body as our capacity for fat absorption is limited. The most effective and efficient way to ensure high EPA uptake in the body rapidly is to supplement with pure EPA for a minimum of 3-6 months.
So why is an excess of DHA detrimental and an excess of EPA useful? DHA has a larger structure with two extra carbons and two extra double bonds, so it literally takes up more space in cell membranes than EPA. On the one hand, this is important because DHA plays a structural role in maintaining the fluidity of cell membranes ( essential for the normal function of proteins, channels and receptors that are also embedded in the membrane), but if a cell membrane becomes too saturated with DHA it can become too fluid, which can have a negative effect on cell function. EPA, on the other hand, is constantly utilised and always in demand.
Interestingly, the results are also consistent with our recent findings that somatic anxiety is associated with omega-3 PUFA deficits and the genetic risks of PUFA metabolic enzyme cytosolic phospholipase A2 in major depressive disorder62,63 and interferon α–induced neuropsychiatric syndrome.63,64 Brain membranes contain a high proportion of omega-3 PUFAs and their derivatives and most animal and human studies suggest that a lack of omega-3 PUFAs in the brain might induce various behavioral and neuropsychiatric disorders,16,65-70 including anxiety-related behaviors.12,18,19,32,49,71 Emerging evidence suggests that omega-3 PUFAs interfere with and possibly control several neurobiological processes, such as neurotransmitter systems, neuroplasticity, and inflammation,12,72 which is postulated to be the mechanism underlying anxiety and depression.
High blood pressure. Fish oil seems to slightly lower blood pressure in people with moderate to very high blood pressure. Some types of fish oil might also reduce blood pressure in people with slightly high blood pressure, but results are inconsistent. Fish oil seems to add to the effects of some, but not all, blood pressure-lowering medications. However, it doesn't seem to reduce blood pressure in people with uncontrolled blood pressure who are already taking blood pressure-lowering medications.
In 1964 it was discovered that enzymes found in sheep tissues convert omega−6 arachidonic acid into the inflammatory agent called prostaglandin E2[71] which both causes the sensation of pain and expedites healing and immune response in traumatized and infected tissues.[72] By 1979 more of what are now known as eicosanoids were discovered: thromboxanes, prostacyclins, and the leukotrienes.[72] The eicosanoids, which have important biological functions, typically have a short active lifetime in the body, starting with synthesis from fatty acids and ending with metabolism by enzymes. If the rate of synthesis exceeds the rate of metabolism, the excess eicosanoids may, however, have deleterious effects.[72] Researchers found that certain omega−3 fatty acids are also converted into eicosanoids, but at a much slower rate. Eicosanoids made from omega−3 fatty acids are often referred to as anti-inflammatory, but in fact they are just less inflammatory than those made from omega−6 fats. If both omega−3 and omega−6 fatty acids are present, they will "compete" to be transformed,[72] so the ratio of long-chain omega−3:omega−6 fatty acids directly affects the type of eicosanoids that are produced.[72]
Hooper, L., Thompson, R. L., Harrison, R. A., Summerbell, C. D., Ness, A. R., Moore, H. J., Worthington, H. V., Durrington, P. N., Higgins, J. P., Capps, N. E., Riemersma, R. A., Ebrahim, S. B., and Davey, Smith G. Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. BMJ 4-1-2006;332(7544):752-760. View abstract.
Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential nutrients that have potential preventive and therapeutic effects on psychiatric disorders, such as anxiety and depression,7-15 as well as comorbid depression and anxiety in physically ill patients,16-19 patients with coronary heart disease,20,21 and pregnant women.22,23 Preclinical data support the effectiveness of omega-3 PUFAs as treatment for anxiety disorders. Song et al24,25 found that an EPA-rich diet could reduce the development of anxiety-like behaviors in rats as well as normalize dopamine levels in the ventral striatum. In addition, Yamada et al26 showed that a high dietary omega-3 to omega-6 PUFA ratio reduced contextual fear behaviors in mice and that these effects were abolished by a cannabinoid CB1 receptor antagonist.
Although results from studies regarding the disease processes of AD seem to be promising, there are conflicting data regarding the use of omega-3 fatty acids in terms of cognitive function. Neuropsychiatric symptoms accompany AD from early stages and tend to increase with the progression of the disease (55). An analysis of 174 patients randomized to a placebo group or to a group with mild to moderate AD (MMSE score ≥15) treated with daily DHA (1.7 g) and EPA (0.6 g) found that at 6 mo, the decline in cognitive function did not differ between the groups. Yet, in a subgroup with very mild cognitive dysfunction (n = 32, MMSE score >27), they observed a significant reduction in the MMSE decline rate in the DHA+EPA-supplemented group compared with the placebo group (47). Another study that looked at DHA supplementation in individuals with mild to moderate AD used the Alzheimer's Disease Assessment Scale–Cognitive subscale, which evaluates cognitive function on a 70-point scale in terms of memory, attention, language, orientation, and praxis. This study found that DHA supplementation had no beneficial effect on cognition during the 18-mo trial period for the DHA group vs. placebo (56).
Marine and freshwater fish oil vary in contents of arachidonic acid, EPA and DHA.[15] The various species range from lean to fatty and their oil content in the tissues has been shown to vary from 0.7% to 15.5%.[16] They also differ in their effects on organ lipids.[15] Studies have revealed that there is no relation between total fish intake or estimated omega−3 fatty acid intake from all fish, and serum omega−3 fatty acid concentrations.[17] Only fatty fish intake, particularly salmonid, and estimated EPA + DHA intake from fatty fish has been observed to be significantly associated with increase in serum EPA + DHA.[17]

Given the wide-ranging importance and benefits of marine omega-3 fatty acids, it is important to eat fish or other seafood one to two times per week, particularly fatty (dark meat) fish that are richer in EPA and DHA. This is especially important for women who are pregnant or hoping to become pregnant and nursing mothers. From the third trimester until the second year of life, a developing child needs a steady supply of DHA to form the brain and other parts of the nervous system. Many women shy away from eating fish because of concerns that mercury and other possible contaminants might harm their babies, (9) yet the evidence for harm from lack of omega-3 fats is far more consistent, and a balance of benefit vs. risk is easily obtained. (To learn more about the controversy over contaminants in fatty fish, read Fish: Friend or Foe.)

The various enzymes (COX and LOX) that make inflammatory eicosanoids can accommodate both AA and EPA, but again due to the greater spatial size of DHA, these enzymes will have difficulty in converting DHA into eicosanoids. This makes DHA a poor substrate for these key inflammatory enzymes. Thus DHA again has little effect on cellular inflammation whereas EPA can have a powerful impact.

Fish oil is very beneficial for pregnant women because the DHA present in it helps in the development of the eyes and brain of the baby. It also helps to avoid premature births, low birth weight, and miscarriages. Research conducted in Denmark, which involved 8,729 pregnant women, concluded that a diet with low amounts of fish resulted in a higher risk of premature or preterm babies.

Dyerberg, J., Eskesen, D. C., Andersen, P. W., Astrup, A., Buemann, B., Christensen, J. H., Clausen, P., Rasmussen, B. F., Schmidt, E. B., Tholstrup, T., Toft, E., Toubro, S., and Stender, S. Effects of trans- and n-3 unsaturated fatty acids on cardiovascular risk markers in healthy males. An 8 weeks dietary intervention study. Eur.J.Clin.Nutr. 2004;58(7):1062-1070. View abstract.
Respected health care organizations proposed intake recommendations for oily fish of two servings per week for healthy adults, which equates to approximately a daily total of 500 milligrams (mg) EPA and DHA.‡ The recommendation encourages adults already with or at-risk of developing cardiovascular disease to talk to their primary healthcare professional about supplementing with amounts greater than 500 mg of EPA and DHA per day. Supportive but not conclusive research shows that consumption of EPA and DHA omega-3 fatty acids may reduce the risk of coronary heart disease.

A, Subgroup meta-analysis of the anxiolytic effect of omega-3 polyunsaturated fatty acids (PUFAs) based on an underlying specific clinical diagnosis or not. The anxiolytic effect of omega-3 PUFAs was not significant in the subgroup of participants without specific clinical conditions (k, 5; Hedges g, –0.008; 95% CI, –0.266 to 0.250; P = .95) but was significant in the subgroup of participants with specific clinical diagnoses (k, 14; Hedges g, 0.512; 95% CI, 0.119-0.906; P = .01). Furthermore, the association of treatment with reduced anxiety symptoms of omega-3 PUFAs were significantly stronger in subgroups with specific clinical diagnoses than in subgroups without specific clinical conditions (P = .03). B, Subgroup meta-analysis of the anxiolytic effect of omega-3 PUFAs based on different mean omega-3 PUFA dosages. The anxiolytic effect of omega-3 PUFAs was not significant in subgroups of mean omega-3 PUFA dosages less than 2000 mg/d (k, 9; Hedges g, 0.457; 95% CI, –0.077 to 0.991; P = .09) but was significant in the subgroup of mean omega-3 PUFA dosage of at least 2000 mg/d (k, 11; Hedges g, 0.213; 95% CI, 0.031-0.395; P = .02).
A report by the Harvard Medical School studied five popular brands of fish oil, including Nordic Ultimate, Kirkland and CVS. They found that the brands had "negligible amounts of mercury, suggesting either that mercury is removed during the manufacturing of purified fish oil or that the fish sources used in these commercial preparations are relatively mercury-free".[66]
RA causes chronic pain, swelling, stiffness, and loss of function in the joints. Some clinical trials have shown that taking omega-3 supplements may help manage RA when taken together with standard RA medications and other treatments. For example, people with RA who take omega-3 supplements may need less pain-relief medication, but it is not clear if the supplements reduce joint pain, swelling, or morning stiffness.
Nine studies with 10 data sets used omega-3 PUFA dosages of less than 2000 mg/d.35,47,48,51,53,55,56,60,61 The main results revealed that there was no significant difference in the association of treatment with reduced anxiety symptoms between patients receiving omega-3 PUFA treatment and those not receiving it (k, 9; Hedges g, 0.457; 95% CI, –0.077 to 0.991; P = .09) (Figure 3B). Ten studies with 10 data sets used omega-3 PUFA dosages of at least 2000 mg/d.33,34,36,49,50,52,54,55,57-59 The main results revealed a significantly greater association of treatment with reduced anxiety symptoms in patients receiving omega-3 PUFA treatment than in those not receiving it (k, 11; Hedges g, 0.213; 95% CI, 0.031-0.395; P = .02) (Figure 3B). Furthermore, there was no significantly different estimated effect sizes between these 2 subgroups by the interaction test (P = .40).
Fish oil is also commonly used to treat conditions such as Rheumatoid arthritis, high blood pressure, ADHD, menstrual pain, hardening of the arteries or kidney problems. These conditions can be improved by improving blood flow, which omega-3 fatty acids in the blood stream. There is also some evidence that fish oil may help with conditions such as chest pain, liver disease, migraine prevention, gum infections, breast pain, and muscle soreness due to exercise, skin rashes and stomach ulcers.
Boucher, O., Burden, M. J., Muckle, G., Saint-Amour, D., Ayotte, P., Dewailly, E. ... Jacobson, J. L.. (2011, May). Neurophysiologic and neurobehavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age. American Journal of Clinical Nutrition 93(5), 1025-1037. Retrieved from http://ajcn.nutrition.org/content/93/5/1025.full
The conversion of ALA to EPA and further to DHA in humans has been reported to be limited, but varies with individuals.[79][80] Women have higher ALA-to-DHA conversion efficiency than men, which is presumed[81] to be due to the lower rate of use of dietary ALA for beta-oxidation. One preliminary study showed that EPA can be increased by lowering the amount of dietary linoleic acid, and DHA can be increased by elevating intake of dietary ALA.[82]
Children require DHA for growth and development, and the brain, CNS and retina rely heavily on the adequate supply of DHA during growth in the womb. Thus women should emphasise DHA in their diets when they become pregnant and continue to take this until they cease breastfeeding. Children continue to need DHA up until the age they start school, so if children under the age of five are taking an omega-3 supplement, it should contain DHA. The exception is for children with developmental problems – where pure EPA or high EPA omega-3 has been shown to be most effective for supporting cognitive function. We would still recommend, where possible, naturally derived sources of omega-3 such as oily fish to support a balanced EPA and DHA intake.
Carrero, J. J., Fonolla, J., Marti, J. L., Jimenez, J., Boza, J. J., and Lopez-Huertas, E. Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. J.Nutr. 2007;137(2):384-390. View abstract.

Meanwhile, blood levels of DHA and EPA are very transitory, reflecting what an individual consumed only recently, while of course prostate cancer has a markedly longer progression. The study was not designed to isolate omega oil :: prostate cancer relationships, so conclusion would be weak. Seems likely to me that when faced with a serious disease, men suddenly begin to try living “right” in a hurry.
The nutritional value of seafood is important during early development. The Dietary Guidelines for Americans 2015–2020 and guidance from the U.S. Food and Drug Administration and Environmental Protection Agency recommend that women who are pregnant or breastfeeding eat at least 8 ounces but no more than 12 ounces of a variety of seafood each week, from choices that are lower in methyl mercury. Methyl mercury can be harmful to the brain and nervous system if a person is exposed to too much of it. 

Gajos, G., Zalewski, J., Rostoff, P., Nessler, J., Piwowarska, W., & Undas, A. (2011, May 26). Reduced thrombin formation and altered fibrin clot properties induced by polyunsaturated omega-3 fatty acids on top of dual antiplatelet therapy in patients undergoing percutaneous coronary intervention (OMEGA-PCI Clot). Arteriosclerosis, Thrombosis, and Vascular Biology 111.228593. Retrieved from http://atvb.ahajournals.org/content/early/2011/05/26/ATVBAHA.111.228593.abstract
This systematic review and meta-analysis of clinical trials conducted on participants with clinical anxiety symptoms provides the first meta-analytic evidence, to our knowledge, that omega-3 PUFA treatment may be associated with anxiety reduction, which might not only be due to a potential placebo effect, but also from some associations of treatment with reduced anxiety symptoms. The beneficial anxiolytic effects of omega-3 PUFAs might be stronger in participants with specific clinical diagnoses than in those without specific clinical conditions. Larger and well-designed clinical trials should be performed with high-dose omega-3 PUFAs, provided as monotherapy and as adjunctive treatment to standard therapy.
Our scientists also focused on each oil’s freshness, measured by the degree of oxidation. Oxidation occurs in two phases: primary (measured by peroxide values) and secondary (measured by p-anisidine values). Total oxidation is formalized into a quantitative score, TOTOX. While Labdoor conducted tests of both primary and secondary oxidation, advances in rancidity testing confirm that added flavors–particularly added citrus flavors prevalent in liquid formulations–skew p-anisidine values and result in false positive outcomes. Until analytical techniques measuring p-anisidine values that are able to account for added flavors are established, Labdoor will use peroxide values as the primary indicator of freshness. All products recorded measurable levels of oxidation, with the average product recording a peroxide values of 3.7 meq/kg. 14/51 products recorded peroxide levels at or above the upper limit (10 meq/kg).
Australian researchers published results of a study examining the effects of fish oil on weight loss in combination with diet and exercise in the May 2007 issue of American Journal of Clinical Nutrition. The results show that a combination of fish oil supplements and regular exercise can reduce body fat while also improving heart and metabolic health. The fish supplementation group had lowered triglycerides, increased HDL cholesterol and improved blood flow. Overall, adding fish oil to a current exercise program (and a overall healthy lifestyle) looks like it can decrease body fat as well as cardiovascular disease risk. (32)

One day I was cooking pasta when the kitchen started to fill with the odor of fish. I happen to hate fish, so this was not a pleasant experience. It was also a mystery, since I never cook fish. A little detective work discovered that the offensive odor was coming from the pasta. Apparently I didn’t notice the “Now with Omega 3” label on the box when I purchased it. My daughter and I still refer to this as the “fish pasta incident”.
Omega-3 FA most likely reduce serum triglyceride levels by modulating very-low-density lipoprotein (VLDL) and chylomicron metabolism. There is a consistent finding in the literature that the end effect of fish oil is decreased hepatic secretion of VLDL17—the major endogenous source of triglycerides. This effect occurs most likely through multiple mechanisms, including: (1) decreased synthesis of triglycerides because these omega-3 FA may not be the preferred substrates of the enzyme diacylglycerol O-acyltransferase,18 or they may interact with nuclear transcription factors that control lipogenesis19; cellular metabolism consequently shifts toward a decrease in triglyceride synthesis and an increase in FA oxidation; and (2) the promotion of apolipoprotein B degradation in the liver through the stimulation of an autophagic process.20 This means that fewer VLDL particles can be assembled and secreted. Fish oil may also accelerate VLDL and chylomicron clearance21 by inducing lipoprotein lipase activity.22
Omega 3 is a type of fat. Small amounts of omega 3 fats are essential for good health, and they can be found in the food that we eat. The main types of omega 3 fatty acids are; alpha­linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA).  ALA is normally found in fats from plant foods, such as nuts and seeds (walnuts and rapeseed are rich sources). EPA and DHA, collectively called long chain omega 3 fats, are naturally found in fatty fish, such as salmon and fish oils including cod liver oil.
In the United States, the Institute of Medicine publishes a system of Dietary Reference Intakes, which includes Recommended Dietary Allowances (RDAs) for individual nutrients, and Acceptable Macronutrient Distribution Ranges (AMDRs) for certain groups of nutrients, such as fats. When there is insufficient evidence to determine an RDA, the institute may publish an Adequate Intake (AI) instead, which has a similar meaning, but is less certain. The AI for α-linolenic acid is 1.6 grams/day for men and 1.1 grams/day for women, while the AMDR is 0.6% to 1.2% of total energy. Because the physiological potency of EPA and DHA is much greater than that of ALA, it is not possible to estimate one AMDR for all omega−3 fatty acids. Approximately 10 percent of the AMDR can be consumed as EPA and/or DHA.[105] The Institute of Medicine has not established a RDA or AI for EPA, DHA or the combination, so there is no Daily Value (DVs are derived from RDAs), no labeling of foods or supplements as providing a DV percentage of these fatty acids per serving, and no labeling a food or supplement as an excellent source, or "High in..."[citation needed] As for safety, there was insufficient evidence as of 2005 to set an upper tolerable limit for omega−3 fatty acids,[105] although the FDA has advised that adults can safely consume up to a total of 3 grams per day of combined DHA and EPA, with no more than 2 g from dietary supplements.[8]
Saito, Y., Yokoyama, M., Origasa, H., Matsuzaki, M., Matsuzawa, Y., Ishikawa, Y., Oikawa, S., Sasaki, J., Hishida, H., Itakura, H., Kita, T., Kitabatake, A., Nakaya, N., Sakata, T., Shimada, K., and Shirato, K. Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention Study (JELIS). Atherosclerosis 2008;200(1):135-140. View abstract.
Thusgaard, M., Christensen, J. H., Morn, B., Andersen, T. S., Vige, R., Arildsen, H., Schmidt, E. B., and Nielsen, H. Effect of fish oil (n-3 polyunsaturated fatty acids) on plasma lipids, lipoproteins and inflammatory markers in HIV-infected patients treated with antiretroviral therapy: a randomized, double-blind, placebo-controlled study. Scand.J.Infect.Dis. 2009;41(10):760-766. View abstract.
The chemical structures of EPA and DHA are very similar and they compete for uptake and processing resources. During digestion, the triglyceride molecules in standard fish oil are broken down into a mono glycerol and two free fatty acids, small enough to be absorbed into cells of the gut lining. More often than not, DHA is the fatty acid that remains attached to the glycerol backbone, meaning in essence that DHA gets a ‘free pass’ into the gut, while the remaining free fatty acids (more often EPA) must reattach onto a glycerol molecule or risk being oxidised and used as fuel. The implication of this is that DHA levels in our cells are often concentrated at the expense of EPA after absorption when taking EPA and DHA in the standard ratio of 1.5 to 1.
Several recent clinical studies, especially those focusing on the benefits of omega-3 in inflammatory conditions, have investigated the actions of pure-EPA in protecting against excess inflammation in the body. EPA works in several different ways. Firstly, it is the precursor to a number of immune messengers, collectively called ‘eicosanoids’ (series-3 prostaglandins, series-3 thromboxanes and series-5 leukotrienes,) all of which have anti-inflammatory roles.

The competition between EPA and DHA during digestion and absorption and the fact that DHA appears to ‘block’ the therapeutic actions of EPA can therefore be an issue if we are looking to optimise the benefits associated with EPA (Martins 2009; Bloch & Qawasmi et al, 2011; Sublette et al, 2011). High dose, high concentration and high ratio EPA supplements increase the effectiveness in depression studies, and pure EPA-only is optimal. Depression is also a condition with an inflammatory basis, so this is likely another significant reason for EPA being the key player – its antagonistic relationship with the inflammatory omega-3 AA (arachidonic acid) is very effective at reducing inflammation.

The U.S. Food and Drug Administration recommends consuming no more than 3 g/day of EPA and DHA combined, including up to 2 g/day from dietary supplements. Higher doses are sometimes used to lower triglycerides, but anyone taking omega-3s for this purpose should be under the care of a healthcare provider because these doses could cause bleeding problems and possibly affect immune function. Any side effects from taking omega-3 supplements in smaller amounts are usually mild. They include an unpleasant taste in the mouth, bad breath, heartburn, nausea, stomach discomfort, diarrhea, headache, and smelly sweat.

Before getting to know some of the fish oil side effects, you have to know more about fish oil, like its benefits and usages. Fish oil has become a popular supplement for athletes, as well as those looking to improve their overall health. Many claims have been made regarding the improvements to the body which can be made by using fish oil to increase the body's level of fatty omega-3 acids. Some of these claims have been backed up by studies, while others have not been proven with significant scientific evidence. There are also some precautions that need to be addressed if you will be taking fish oil regularly. People with certain health conditions may see a worsening of their symptoms if they increase their intake of fatty acids too quickly or with the wrong products.

EPA and DHA are vital nutrients and may be taken to maintain healthy function of the following: brain and retina: DHA is a building block of tissue in the brain and retina of the eye. It helps with forming neural transmitters, such as phosphatidylserine, which is important for brain function. DHA is found in the retina of the eye and taking DHA may be necessary for maintaining healthy levels of DHA for normal eye function.
It is also believed that women who do not have a sufficient intake of EPA and DHA in their diet suffer from depression after childbirth, as there is a transfer of some amount of brain mass from the mother to the child in the last stages of pregnancy. Thus, it is very beneficial to consume fish oil either by eating fish or taking fish oil supplements, tablets, capsules, or pills during pregnancy for the overall development of the child and the well-being of the mother. However, it should be noted that fish oil obtained from the liver of the fish, example – cod liver oil, should not be consumed during pregnancy as cod liver oil is high in retinol and vitamin A, which are usually known to cause birth defects.
The conversion of ALA to EPA and further to DHA in humans has been reported to be limited, but varies with individuals.[79][80] Women have higher ALA-to-DHA conversion efficiency than men, which is presumed[81] to be due to the lower rate of use of dietary ALA for beta-oxidation. One preliminary study showed that EPA can be increased by lowering the amount of dietary linoleic acid, and DHA can be increased by elevating intake of dietary ALA.[82]
Your best way to achieve a good balance of omega-3 and omega-6 is by getting your fish oil from wild-caught fish like salmon. However, I still think it is beneficial for some to supplement with a high-quality omega-3 fish oil or cod liver oil. Plus, cold water fish are frequently contaminated with mercury and pesticide residues, making it very difficult to safely achieve recommended levels.
On September 8, 2004, the U.S. Food and Drug Administration gave "qualified health claim" status to EPA and DHA omega−3 fatty acids, stating, "supportive but not conclusive research shows that consumption of EPA and DHA [omega−3] fatty acids may reduce the risk of coronary heart disease".[98] This updated and modified their health risk advice letter of 2001 (see below).
Higdon JV, Liu J, Du S, et al. Supplementation of postmenopausal women with fish oil rich in eicosapentaenoic acid and docosahexaenoic acid is not associated with greater in vivo lipid peroxidation compared with oils rich in oleate and linoleate as assessed by plasma malondialdehyde and F(2)- isoprostanes. Am J Clin Nutr 2000;72:714-22. View abstract.
Weimann, A., Bastian, L., Bischoff, W. E., Grotz, M., Hansel, M., Lotz, J., Trautwein, C., Tusch, G., Schlitt, H. J., and Regel, G. Influence of arginine, omega-3 fatty acids and nucleotide-supplemented enteral support on systemic inflammatory response syndrome and multiple organ failure in patients after severe trauma. Nutrition 1998;14(2):165-172. View abstract.