An animal study involving the omega-3 ETA discovered that subjects experienced a drop in overall inflammation similar to that caused by NSAIDs (non-steroidal anti-inflammatory drugs), but without the dangerous gastrointestinal side effects. The study authors also pointed out that eicosapentaenoic acid seems to be even more potent than the conventional omega-3s found in fish oil supplements (EPA/DHA). (56)


Finally, it is often assumed since there are not high levels of EPA in the brain, that it is not important for neurological function. Actually it is key for reducing neuro-inflammation by competing against AA for access to the same enzymes needed to produce inflammatory eicosanoids. However, once EPA enters into the brain it is rapidly oxidized (2,3). This is not the case with DHA (4). The only way to control cellular inflammation in the brain is to maintain high levels of EPA in the blood. This is why all the work on depression, ADHD, brain trauma, etc. have demonstrated EPA to be superior to DHA (5).
The use of DHA by persons with epilepsy could decrease the frequency of their seizures. Studies have shown that children with epilepsy had a major improvement, i.e. decrease in the frequency of their seizures, but another study showed mixed results with 57 adults taking DHA supplementation. The 57 subjects demonstrated a decreased frequency of seizures for the first six weeks of the study, but for some, it was just a temporary improvement (R).

“Lipid peroxidation induced by DHA enrichment modifies paracellular permeability in Caco-2 cells: protective role of taurine.” We conclude that hydrogen peroxide and peroxynitrite may be involved in the DHA-induced increase in paracellular permeability and that the protective role of taurine may be in part related to its capacity to counteract the effects of hydrogen peroxide.
Age-related macular degeneration (AMD) is an eye disease that can cause vision loss in older people. Two major National Institutes of Health (NIH)-sponsored studies, called Age-Related Eye Disease Study (AREDS) and Age-Related Eye Disease Study 2 (AREDS2), showed that dietary supplements containing specific combinations of vitamins, antioxidants, and zinc helped slow the progression of AMD in people who were at high risk of developing the advanced stage of this disease. AREDS2, which had more than 4,000 participants and was completed in 2013, also tested EPA and DHA. The results showed that adding these omega-3s to the supplement formulation didn’t provide any additional benefits. Other, smaller studies of omega-3 supplements also haven’t shown them to have a beneficial effect on the progression of AMD. 
Good for you for eating healthily! Sadly, many people do not like omega-3 containing foods such as fish, and for these people, supplementation may be a good alternative to obtain omega-3. As a clinical investigator, my research focuses on study supplements, which is what I was asked to cover in this article. I’m all for healthy eating, but not everyone can afford it or wants to eat certain foods, and this is perhaps why supplements are so popular.
There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.
Jump up ^ Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, Goldberg AC, Howard WJ, Jacobson MS, Kris-Etherton PM, Lennie TA, Levi M, Mazzone T, Pennathur S (May 2011). "Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association". Circulation. 123 (20): 2292–333. doi:10.1161/CIR.0b013e3182160726. PMID 21502576.
Bell, J. G., Miller, D., MacDonald, D. J., MacKinlay, E. E., Dick, J. R., Cheseldine, S., Boyle, R. M., Graham, C., and O'Hare, A. E. The fatty acid compositions of erythrocyte and plasma polar lipids in children with autism, developmental delay or typically developing controls and the effect of fish oil intake. Br J Nutr 2010;103(8):1160-1167. View abstract.
While fish oil has plenty of beneficial qualities, there is a lot of hype around its possible applications, and not all of them are accurate, so be wary when reading literature on this useful oil. Fish oil manufacturers have attempted to market it as a remedy for almost anything. We suggest that readers educate themselves fully before making an informed decision, rather than getting affected by both negative and positive propaganda about the beneficial applications of fish oil.
All people need to consume omega-3 fats regularly. The recommended daily intake for adults is 1.6 grams for males  and 1.1 grams for females, according to the National Institutes of Health. The omega-3 family encompasses numerous fatty acids, but three primary forms are eicosapentaenoic acid, docosahexaenoic acid, and alpha-linolenic acid. The first two forms primarily occur in fish, such as salmon, mackerel, and tuna. The third can be found in plant oils, including flaxseed, soybean, walnut, and canola oils.
While I think the article is good, it does not tell the reader that most of fish oil capsules sold over the counter are unregulated, and contain widely different ingredients and potency levels. They are mostly a waste of money. If you have health concerns, you need to consult an MD or a Registered Dietitian. Not a naturopath, homeopath, or other pseudoscience practitioner. Eat a diet rich in whole grains, nuts, and some oily fish. I take a multivitamin supplement made by CVS, formulated for my gender and age. Not from the food supplement shelves, which are unregulated, and might contain anything at all, or nothing but vegetable oil or cornstarch.
After a large number of lab studies found that omega-3 fatty acids may be effective in slowing or reversing the growth of hormonal cancers, namely prostate and breast cancer cells, animal and human epidemiological studies have been conducted to see whether this effect occurred in real-life scenarios. The evidence is somewhat conflicting in some reports, but there is some evidence to suggest breast and prostate cancers may be potentially slowed (or the risk reduced) in people who eat a lot of oily fish and possibly those who supplement with omega-3. (66, 67, 68)
Warfarin (Coumadin) is used to slow blood clotting. Fish oil also might slow blood clotting. Taking fish oil with warfarin might slow blood clotting too much and increase the risk of bleeding. However, conflicting results suggests that fish oil does not increase the effects of warfarin. Until more is known, use cautiously in combination with warfarin. Have your blood checked regularly, as your dose of warfarin (Coumadin) might need to be changed.
First, all Omega-3 products are not alike. Here's what I learned about Omega-3 from my research. The "3" relates to three sources of Omega-3 fatty acids. Two of them, DHA and EPA are found in marine products such as fish and krill. The third source, ALA, is from plants. So with fish oil you are getting two of the three sources at once. That makes sense to me as a good reason to take Omega-3 fish oil. You will also note below that many of the reasons we choose to take Omega-3 do not occur with plant-based products.
Several large studies have linked higher blood levels of long-chain omega-3s with higher risks of prostate cancer. However, other research has shown that men who frequently eat seafood have lower prostate cancer death rates and that dietary intakes of long-chain omega-3s aren’t associated with prostate cancer risk. The reason for these apparently conflicting findings is unclear. 
Hanwell, H. E., Kay, C. D., Lampe, J. W., Holub, B. J., and Duncan, A. M. Acute fish oil and soy isoflavone supplementation increase postprandial serum (n-3) polyunsaturated fatty acids and isoflavones but do not affect triacylglycerols or biomarkers of oxidative stress in overweight and obese hypertriglyceridemic men. J Nutr 2009;139(6):1128-1134. View abstract.
The evidence that fish oil consumption should be used for primary prevention of CAD is based on observational studies. The only randomized trial for primary prevention, the JELIS trial, showed a moderate relative risk reduction and was conducted in a very specific group. Nevertheless, to date, there has been no strong signal suggesting any serious adverse effects of having high DHA and EPA oils in the diet. We agree with the national guidelines that one should consume moderate amounts of fish oil— either in supplement or through the dietary intake of fatty fish with low mercury levels.
16. Saito Y, Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, et al. Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention Study (JELIS). Atherosclerosis. 2008;200:135–40. [PubMed]
In your final paragraph, you suggest that a ratio of 2:1 EPA/DHA maybe best for reducing inflammation. Are you suggesting using two separate products to obtain that ratio? I can't see how it is achieveable through standard omega-3 products. Good fish oil brands are typically 60% or higher EPA, but never reach a 2:1 ratio in my product searches. According to case studies (link below), 1 gram of EPA per day (60% or more of the total omega-3 content) is sufficient and the highest efficacy.
Tanaka, K., Ishikawa, Y., Yokoyama, M., Origasa, H., Matsuzaki, M., Saito, Y., Matsuzawa, Y., Sasaki, J., Oikawa, S., Hishida, H., Itakura, H., Kita, T., Kitabatake, A., Nakaya, N., Sakata, T., Shimada, K., and Shirato, K. Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: subanalysis of the JELIS trial. Stroke 2008;39(7):2052-2058. View abstract.
Widenhorn-Müller  K, Schwanda  S, Scholz  E, Spitzer  M, Bode  H.  Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): a randomized placebo-controlled intervention trial.  Prostaglandins Leukot Essent Fatty Acids. 2014;91(1-2):49-60. doi:10.1016/j.plefa.2014.04.004PubMedGoogle ScholarCrossref
42. Cawood AL, Ding R, Napper FL, Young RH, Williams JA, Ward MJ, Gudmundsen O, Vige R, Payne SP, Ye S, et al. Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis. 2010;212:252–9. [PubMed]
Your concerns are very valid. The quality of commercially available omega-3 preparations can vary greatly. In our clinical trials we use preparations made by reputable manufacturers with high standards. We also have the preparations analyzed by 2 independent labs to confirm omega-3 content, impurities, and degree of oxidation, prior to initiating the study. While omega-3 fatty acids–like most nutrients–are ideally obtained through dietary practice, because many people may not enjoy omega-3 containing foods, supplements may be a good option for these individuals. Anyone who is interested in using an omega-3 preparation for treating a psychiatric condition should do so preferably under the supervision of a psychiatrist.
Due to the anticipated heterogeneity, a random-effects meta-analysis was chosen rather than a fixed-effects meta-analysis because random-effects modeling is more stringent and incorporates an among-study variance in the calculations. The entire meta-analysis procedure was performed on the platform of Comprehensive Meta-analysis statistical software, version 3 (Biostat). Under the preliminary assumption that the scales for anxiety symptoms are heterogeneous among the recruited studies, we chose Hedges g and 95% confidence intervals to combine the effect sizes, in accordance with the manual of the Comprehensive Meta-analysis statistical software, version 3. Regarding the interpretation of effect sizes, we defined Hedges g values 0 or higher as a better association of treatment with reduced anxiety symptoms of omega-3 PUFAs than in controls. For each analysis, a 2-tailed P value less than .05 was considered to indicate statistical significance. When more than 1 anxiety scale was used in a study, we chose the one with the most informative data (ie, mean and standard deviation [SD] before and after treatment). We entered the primary outcome provided in the included articles or obtained from the original authors. As for the variance imputation, we mainly chose the mean and SD before and after treatment. Later, we entered the mean and SD and calculated the effect sizes based on the software option, standardized by post score SD. In the case of studies with 2 active treatment arms, we merged the 2 active treatment arms into 1 group. If these 2 active treatment arms belonged to different subgroups (ie, different PUFA dosage subgroups), we kept them separate. Regarding the numbers of participants counted, we chose intention-to-treat as our priority. If there were insufficient data in the intention to treat group (ie, some studies only provided the changes in anxiety severity in those participants completing trials), we chose instead the per-protocol numbers of participants.
A number of trials have found that omega-3 PUFAs might reduce anxiety under serious stressful situations. Case-controlled studies have shown low peripheral omega-3 PUFA levels in patients with anxiety disorders.27-31 A cohort study found that high serum EPA levels were associated with protection against posttraumatic stress disorder.32 In studies of therapeutic interventions, while a randomized clinical trial of adjunctive EPA treatment in patients with obsessive-compulsive disorder revealed that EPA augmentation had no beneficial effect on symptoms of anxiety, depression, or obsessive-compulsiveness,33 a randomized clinical trial involving participants with substance abuse showed that EPA and DHA administration was accompanied by significant decreases in anger and anxiety scores compared with placebo.34 In addition, a randomized clinical trial found that omega-3 PUFAs had additional effects on decreasing depressive and anxiety symptoms in patients with acute myocardial infarction,35 and a randomized clinical trial demonstrated that omega-3 PUFAs could reduce inflammation and anxiety among healthy young adults facing a stressful major examination.36 Despite the largely positive findings of these trials, the clinical application of the findings is unfortunately limited by their small sample sizes.
Omega 3 fatty acids are monounsaturated fats that come from food sources—primarily cold water fish (eg, salmon, trout, tuna, mackerel, and herring)—that contain EPA (eicosapentaenoic acid) and docosahexaenoic acid (DHA). Other fatty acids are derived from plant-derived sources of food—including nuts (especially walnuts) and seeds (eg, flax, chia, sunflower)—that have primarily ALA (alpha-linolenic acid).
Yamagishi, K., Iso, H., Date, C., Fukui, M., Wakai, K., Kikuchi, S., Inaba, Y., Tanabe, N., and Tamakoshi, A. Fish, omega-3 polyunsaturated fatty acids, and mortality from cardiovascular diseases in a nationwide community-based cohort of Japanese men and women the JACC (Japan Collaborative Cohort Study for Evaluation of Cancer Risk) Study. J.Am.Coll.Cardiol. 9-16-2008;52(12):988-996. View abstract.
For slowing weight loss in patients with cancer: 30 mL of a specific fish oil product (ACO Omega-3, Pharmacia, Stockholm, Sweden) providing 4.9 grams of EPA and 3.2 grams of DHA daily for 4 weeks has been used. 7.5 grams of fish oil daily providing EPA 4.7 grams and DHA 2.8 grams has been used for about 6 weeks. In addition, two cans of a fish oil nutritional supplement containing 1.09 grams of EPA and 0.96 grams of DHA per can have been used daily for up to 7 weeks.
×