Although results from studies regarding the disease processes of AD seem to be promising, there are conflicting data regarding the use of omega-3 fatty acids in terms of cognitive function. Neuropsychiatric symptoms accompany AD from early stages and tend to increase with the progression of the disease (55). An analysis of 174 patients randomized to a placebo group or to a group with mild to moderate AD (MMSE score ≥15) treated with daily DHA (1.7 g) and EPA (0.6 g) found that at 6 mo, the decline in cognitive function did not differ between the groups. Yet, in a subgroup with very mild cognitive dysfunction (n = 32, MMSE score >27), they observed a significant reduction in the MMSE decline rate in the DHA+EPA-supplemented group compared with the placebo group (47). Another study that looked at DHA supplementation in individuals with mild to moderate AD used the Alzheimer's Disease Assessment Scale–Cognitive subscale, which evaluates cognitive function on a 70-point scale in terms of memory, attention, language, orientation, and praxis. This study found that DHA supplementation had no beneficial effect on cognition during the 18-mo trial period for the DHA group vs. placebo (56).

People used to believe that osteoporosis and osteoarthritis were the result of aging and reduced intake of calcium and milk products. Science has now shown that these bone and joint disorders are, in part, due to inflammation. Because of this, bones and joints are prime targets for the anti-inflammatory properties of omega-3 oils from both fish and krill.
Alpha-linolenic Acid (ALA): This plant-based omega-3 is found in green, leafy vegetables, flaxseeds, chia seeds and canola, walnut and soybean oils (although those rancid oils are not ones I generally recommend). ALA is known as a short-chain omega-3, meaning your body has to convert it into longer-chained EPA and DHA to synthesize it. This process is rather inefficient and only about one percent of the ALA you consume is converted to the long-chain version your body needs (although this percentage is slightly higher for women).
Pay attention to the quality of fish oil when purchasing it. It is obtained from almost all fishes – fresh water, farm, ocean, deep sea and shallow sea fish. All these fishes can be contaminated with toxic compounds such as mercury, arsenic, lead, forms of calcium, furans, dioxins, PCBs, and methylmercury, and can negatively affect the human body. Therefore, the fish oil used must be pure. Many companies sell ultra refined or distilled fish oil, but you should always check if the standards have been followed and research on the company or the product before adding it to your diet.
The Japanese notably have the lowest levels of coronary heart disease mortality and atherosclerosis among developed nations — a phenomena that has been largely subscribed to diet. However, even within Japan, a 10-year study of over 41,000 people found that higher intakes of omega-3s were associated with lower risks of nonfatal coronary events (8). A more recent study also found that Japanese with higher omega-3 index levels (10%) had a lower risk of fatal coronary heart disease than those with a lower omega-3 index levels (8%) (9). The study begs the question of whether maybe even the Japanese have room to improve their omega-3 intake and whether 8% should be considered the lower limit of a desirable range.
Fish oil is FDA approved to lower triglycerides levels, but it is also used for many other conditions. It is most often used for conditions related to the heart and blood system. Some people use fish oil to lower blood pressure, triglycerides and cholesterol levels. Fish oil has also been used for preventing heart disease or stroke, as well as for clogged arteries, chest pain, irregular heartbeat, bypass surgery, heart failure, rapid heartbeat, preventing blood clots, and high blood pressure after a heart transplant.
×