Three randomized trials assessing more than 600 patients with known malignant ventricular arrhythmia were carried out under the protection of implanted cardioverter defibrillator (ICD) therapy.41–43 In all 3 of the trials, 75% of the patients had ischemic heart disease, survived ventricular tachycardia or ventricular fibrillation and were randomized to 1 to 3 g/d of fish oil. In the first trial of its kind, 402 patients with ICDs were randomized to either a fish oil or an olive oil supplement.41 Although statistical significance was not reached, after approximately 1 year the primary end-point of time to first ICD cardioversion for ventricular tachycardia or fibrillation or death from any cause was longer in the fish oil group. This finding was not replicated in a trial of 200 patients who were randomized to either fish oil or a placebo and followed for a median of approximately 2 years.42 In fact, time to first ICD cardioversion was not changed and the incidence of recurrent ventricular tachycardia and fibrillation was more common in the group assigned to fish oil. In the largest trial, 546 patients were randomized to supplemental fish oil or a placebo and were followed for a mean period of 1 year.43 The primary outcome of the rate of ICD cardioversion or all-cause mortality was not reduced. It was concluded in a recent meta-analysis of these trials that fish oil did not have a protective effect.44
Krill oil is joining the toolkit for fighting arthritis, thanks to its exceptional anti-inflammatory properties resulting from its phospholipid form of omega-3s. A study in mice with experimental arthritis showed that krill oil supplements reduced arthritis scores and markedly diminished joint swelling. When examined under a microscope, the animals’ joints were remarkably free of inflammatory infiltrates of immune system cells.85
Omega-3s have been studied for other conditions, with either inconclusive or negative results. These conditions include allergies, atopic eczema (an allergic skin condition), cystic fibrosis, diabetes, inflammatory bowel diseases (Crohn’s disease or ulcerative colitis), intermittent claudication (a circulatory problem), nonalcoholic fatty liver disease, and osteoporosis. 
One reason omega-3 fatty acids may be so beneficial to this many aspects of health could be that they help decrease system-wide inflammation. (49, 50, 51, 52, 53) Inflammation is at the root of most diseases and is related to the development of nearly every major illness, so by eating a nutrient-dense, anti-inflammatory diet, you give your body its best chance to fight disease like it was designed to do.
Marine and freshwater fish oil vary in contents of arachidonic acid, EPA and DHA.[15] The various species range from lean to fatty and their oil content in the tissues has been shown to vary from 0.7% to 15.5%.[16] They also differ in their effects on organ lipids.[15] Studies have revealed that there is no relation between total fish intake or estimated omega−3 fatty acid intake from all fish, and serum omega−3 fatty acid concentrations.[17] Only fatty fish intake, particularly salmonid, and estimated EPA + DHA intake from fatty fish has been observed to be significantly associated with increase in serum EPA + DHA.[17]
Fish oil is oil derived from the tissues of oily fish. Fish oils contain the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), precursors of certain eicosanoids that are known to reduce inflammation in the body,[1][2] and have other health benefits, such as treating hypertriglyceridemia, although claims of preventing heart attacks or strokes have not been supported.[3][4][5][6] Fish oil and omega-3 fatty acids have been studied in a wide variety of other conditions, such as clinical depression,[7][8] anxiety,[9][10][11] cancer, and macular degeneration, yet benefits in these conditions have not been verified.[12]
Luo, J Rizkalla SW Vidal H Oppert JM Colas C Boussairi A Guerre-Millo M Chapuis AS Chevalier A Durand G Slama G. Moderate intake of n-3 fatty acids for 2 months has no detrimental effect on glucose metabolism and could ameliorate the lipid profile in type 2 diabetic men. Results of a controlled study. Diabetes Care. 1998;21(5):717-724. View abstract.
According to the Cardiovascular Research Institute in Maastricht in Netherlands, “Epidemiological studies show that replacing fat with carbohydrates may even be worse [than the Western-type high-fat diet] and that various polyunsaturated fatty acids (FA) have beneficial rather than detrimental effects on CVD (cardiovascular disease) outcome.” This includes fish-oil fatty acids with anti-inflammatory properties, which can help prevent and reverse a plethora of cardiovascular diseases. (19)
On September 8, 2004, the U.S. Food and Drug Administration gave "qualified health claim" status to EPA and DHA omega−3 fatty acids, stating, "supportive but not conclusive research shows that consumption of EPA and DHA [omega−3] fatty acids may reduce the risk of coronary heart disease".[98] This updated and modified their health risk advice letter of 2001 (see below).
Omega-3 FA most likely reduce serum triglyceride levels by modulating very-low-density lipoprotein (VLDL) and chylomicron metabolism. There is a consistent finding in the literature that the end effect of fish oil is decreased hepatic secretion of VLDL17—the major endogenous source of triglycerides. This effect occurs most likely through multiple mechanisms, including: (1) decreased synthesis of triglycerides because these omega-3 FA may not be the preferred substrates of the enzyme diacylglycerol O-acyltransferase,18 or they may interact with nuclear transcription factors that control lipogenesis19; cellular metabolism consequently shifts toward a decrease in triglyceride synthesis and an increase in FA oxidation; and (2) the promotion of apolipoprotein B degradation in the liver through the stimulation of an autophagic process.20 This means that fewer VLDL particles can be assembled and secreted. Fish oil may also accelerate VLDL and chylomicron clearance21 by inducing lipoprotein lipase activity.22
DHA is vital for early brain development and maintenance, while EPA seems to be closely related to behavior and mood. Together, both molecules provide critical neuroprotective benefits.11 These neuroprotective effects are important for the prevention of age-related brain shrinkage (cortical atrophy). Aging adults with brain shrinkage often experience memory loss, cognitive decline, and an increase in depression.12-14
The bottom line of all that is that there was no clear health benefit from consuming omega-3 fatty acids in food or supplements. There was a suggestion of a possible benefit from LCn3 on cardiac events, but this did not hold up when they took into consideration the quality of the evidence. The better trials, with less risk of bias, tended to be negative.
The Department of Ecology of the State of Washington has ranked various seafood based on its EPA and DHA concentrations. The highest-ranking seafood is mackerel, excluding King mackerel, that has a concentration of 1,790 milligrams of combined EPA and DHA per 100 grams, followed by salmon at 1,590; bluefin tuna has between 1173 and 1504 milligrams; sardines contain 980 milligrams; albacore tuna has 862 milligrams; bass has 640 milligrams; tuna has 630 milligrams; trout and swordfish have 580 milligrams; and walleye has 530 milligrams. Other seafood, which includes sea bass, clams, lobster, scallops, catfish, cod, pollock, crayfish and scallops contains between 200 and 500 milligrams of EPA and DHA per 100 grams. Breaded fish products rank lowest on the list with only 0.26 milligram per 100 grams.
DHA is vital for early brain development and maintenance, while EPA seems to be closely related to behavior and mood. Together, both molecules provide critical neuroprotective benefits.11 These neuroprotective effects are important for the prevention of age-related brain shrinkage (cortical atrophy). Aging adults with brain shrinkage often experience memory loss, cognitive decline, and an increase in depression.12-14
A number of trials have found that omega-3 PUFAs might reduce anxiety under serious stressful situations. Case-controlled studies have shown low peripheral omega-3 PUFA levels in patients with anxiety disorders.27-31 A cohort study found that high serum EPA levels were associated with protection against posttraumatic stress disorder.32 In studies of therapeutic interventions, while a randomized clinical trial of adjunctive EPA treatment in patients with obsessive-compulsive disorder revealed that EPA augmentation had no beneficial effect on symptoms of anxiety, depression, or obsessive-compulsiveness,33 a randomized clinical trial involving participants with substance abuse showed that EPA and DHA administration was accompanied by significant decreases in anger and anxiety scores compared with placebo.34 In addition, a randomized clinical trial found that omega-3 PUFAs had additional effects on decreasing depressive and anxiety symptoms in patients with acute myocardial infarction,35 and a randomized clinical trial demonstrated that omega-3 PUFAs could reduce inflammation and anxiety among healthy young adults facing a stressful major examination.36 Despite the largely positive findings of these trials, the clinical application of the findings is unfortunately limited by their small sample sizes.

If you have a bleeding disorder, bruise easily or take blood-thinning medications, you should use fish oil supplements with extra caution since large doses of omega-3 fatty acids can increase bleeding risk. This bleeding risk also applies to people with no history of bleeding disorders or current medication usage. If you have type 2 diabetes, you should only use fish oil supplements under your doctor’s supervision. Individuals with type 2 diabetes can experience increases in fasting blood sugar levels while taking fish oil supplements.
Some studies suggest that people who get higher amounts of omega-3s from foods and dietary supplements may have a lower risk of breast cancer and perhaps colorectal cancer. More research is needed to confirm this possible link. Whether omega-3s affect the risk of other cancers is not clear. Clinical trials to examine this possibility are in progress.

Bemelmans, W. J., Broer, J., Feskens, E. J., Smit, A. J., Muskiet, F. A., Lefrandt, J. D., Bom, V. J., May, J. F., and Meyboom-de Jong, B. Effect of an increased intake of alpha-linolenic acid and group nutritional education on cardiovascular risk factors: the Mediterranean Alpha-linolenic Enriched Groningen Dietary Intervention (MARGARIN) study. Am J Clin Nutr 2002;75(2):221-227. View abstract.

In fact, fish oil is even dipping its way into mainstream medicine. In September 2018, Amarin Corporation, the biopharmaceutical developer of pharmaceutical-grade fish oil Vascepa, released preliminary findings of its double-blind clinical trial. In the study, researchers tracked more than 8,000 adults for a median 4.9 years. The mix of study participants had either established cardiovascular disease or type 2 diabetes and another cardiovascular disease risk factor, along with persistently elevated triglycerides.
It’s no surprise that fish — particularly cold-water fatty fish like salmon, mackerel, and anchovies — are rich in omega-3s. It’s called fish oil for a reason, right? Mackerel, for instance, may have more than 3300 mg of omega-3 per serving — that’s more than 6 times the recommended per day dose for healthy adults. Not a huge fish connoisseur? Try some of the quick, simple recipes in Cooking with Fish Like a Pro, an accessible collection of fish recipes to suit every palate.
The current American diet has changed over time to be high in SFA and low in omega-3 fatty acids (12). This change in eating habits is centered on fast food containing high amounts of saturated fat, which has small amounts of essential omega-3 PUFA compared with food prepared in the home (13). Seafood sources such as fish and fish-oil supplements are the primary contributors of the 2 biologically important dietary omega-3 fatty acids, EPA and DHA (14–16). This low intake of dietary EPA and DHA is thought to be associated with increased inflammatory processes as well as poor fetal development, general cardiovascular health, and risk of the development of Alzheimer's disease (AD).
Evidence in the population generally does not support a beneficial role for omega−3 fatty acid supplementation in preventing cardiovascular disease (including myocardial infarction and sudden cardiac death) or stroke.[4][19][20][21] A 2018 meta-analysis found no support that daily intake of one gram of omega-3 fatty acid in individuals with a history of coronary heart disease prevents fatal coronary heart disease, nonfatal myocardial infarction or any other vascular event.[6] However, omega−3 fatty acid supplementation greater than one gram daily for at least a year may be protective against cardiac death, sudden death, and myocardial infarction in people who have a history of cardiovascular disease.[22] No protective effect against the development of stroke or all-cause mortality was seen in this population.[22] Eating a diet high in fish that contain long chain omega−3 fatty acids does appear to decrease the risk of stroke.[23] Fish oil supplementation has not been shown to benefit revascularization or abnormal heart rhythms and has no effect on heart failure hospital admission rates.[24] Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes.[7]
In a study published after the AHRQ report, scientists in Denmark gave high-dose fish oil supplements or placebos to 736 pregnant women during the third trimester of pregnancy. Children born to mothers who had taken fish oil were less likely to develop asthma or persistent wheezing in early childhood, and this was most noticeable in children whose mothers had low blood levels of EPA and DHA before they started to take the supplements. However, other studies that evaluated the effects of omega-3 supplementation during pregnancy on childhood asthma risk have had inconsistent results.

In 1964 it was discovered that enzymes found in sheep tissues convert omega−6 arachidonic acid into the inflammatory agent called prostaglandin E2[71] which both causes the sensation of pain and expedites healing and immune response in traumatized and infected tissues.[72] By 1979 more of what are now known as eicosanoids were discovered: thromboxanes, prostacyclins, and the leukotrienes.[72] The eicosanoids, which have important biological functions, typically have a short active lifetime in the body, starting with synthesis from fatty acids and ending with metabolism by enzymes. If the rate of synthesis exceeds the rate of metabolism, the excess eicosanoids may, however, have deleterious effects.[72] Researchers found that certain omega−3 fatty acids are also converted into eicosanoids, but at a much slower rate. Eicosanoids made from omega−3 fatty acids are often referred to as anti-inflammatory, but in fact they are just less inflammatory than those made from omega−6 fats. If both omega−3 and omega−6 fatty acids are present, they will "compete" to be transformed,[72] so the ratio of long-chain omega−3:omega−6 fatty acids directly affects the type of eicosanoids that are produced.[72]

My initial interest in omga-3 was an article by Dr Andrew Stoll in Harvard about May 99, One of my bipolar patients had extreme OCD related to HIV which was not relevant to her. I put her on 9.6g of fish oil and continued her on her regular medication. She was well for the next 3 years with no obvious mental health problem when she was attending here.
They also found that taking more long-chain omega 3 fats (including EPA and DHA), primarily through supplements probably makes little or no difference to risk of cardiovascular events, coronary heart deaths, coronary heart disease events, stroke or heart irregularities. Long-chain omega 3 fats probably did reduce some blood fats, triglycerides and HDL cholesterol. Reducing triglycerides is likely to be protective of heart diseases, but reducing HDL has the opposite effect. The researchers collected information on harms from the studies, but information on bleeding and blood clots was very limited. 
Increasing ALA intake probably makes little or no difference to all‐cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low‐quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low‐quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.
Nielsen, A. A., Jorgensen, L. G., Nielsen, J. N., Eivindson, M., Gronbaek, H., Vind, I., Hougaard, D. M., Skogstrand, K., Jensen, S., Munkholm, P., Brandslund, I., and Hey, H. Omega-3 fatty acids inhibit an increase of proinflammatory cytokines in patients with active Crohn's disease compared with omega-6 fatty acids. Aliment.Pharmacol.Ther. 2005;22(11-12):1121-1128. View abstract.
It is believed that regular consumption of fish oil aids in boosting your immune system, thereby enabling you to resist the occurrence of common diseases like colds, cough, and the flu. Omega-3 fatty acids present in fish oil bolster the immune system by affecting the activity and amount of cytokines and eicosanoids present in our body. Researchers have also studied the effect of a fish meal and fish oil on the immune system of pigs and found that fish oil aided in the growth of the animals. Similar research conducted on mice at Taichung Veterans General Hospital, Taiwan, also gave positive results.
Pay attention to the quality of fish oil when purchasing it. It is obtained from almost all fishes – fresh water, farm, ocean, deep sea and shallow sea fish. All these fishes can be contaminated with toxic compounds such as mercury, arsenic, lead, forms of calcium, furans, dioxins, PCBs, and methylmercury, and can negatively affect the human body. Therefore, the fish oil used must be pure. Many companies sell ultra refined or distilled fish oil, but you should always check if the standards have been followed and research on the company or the product before adding it to your diet.
The strongest evidence for a beneficial effect of omega-3 fats has to do with heart disease. These fats appear to help the heart beat at a steady clip and not veer into a dangerous or potentially fatal erratic rhythm. (1) Such arrhythmias cause most of the 500,000-plus cardiac deaths that occur each year in the United States. Omega-3 fats also lower blood pressure and heart rate, improve blood vessel function, and, at higher doses, lower triglycerides and may ease inflammation, which plays a role in the development of atherosclerosis. (1)
Schilling, J., Vranjes, N., Fierz, W., Joller, H., Gyurech, D., Ludwig, E., Marathias, K., and Geroulanos, S. Clinical outcome and immunology of postoperative arginine, omega-3 fatty acids, and nucleotide-enriched enteral feeding: a randomized prospective comparison with standard enteral and low calorie/low fat i.v. solutions. Nutrition 1996;12(6):423-429. View abstract.
Abnormal rapid heart rhythms (ventricular arrhythmias). Population research suggests that eating a lot of fish has no effect on the risk for abnormal rapid heart rhythms. Clinical research is inconsistent. Some research shows that taking fish oil daily does not affect the risk for abnormal heart rhythms. But other research shows that taking fish oil for 11 months delays the development of the condition. However, overall, taking fish oil does not seem to reduce the risk of death in people with abnormal rapid heart rhythms.