Fish oil has been shown to have a direct electrophysiological effect on the myocardium. Initial experience with animal ischemia models demonstrated that the ventricular fibrillation threshold was increased in both animals fed or infused with omega-3 FA.23,24 This progressed to a demonstration, on a cellular and ion channel level, that omega-3 FA reduce both sodium currents and L-type calcium currents.25–29 It is hypothesized that during ischemia, a reduction in the sodium ion current protects hyperexcitable tissue, and a reduction in the calcium ion current reduces arrhythmogenic depolarizing currents.30
Thanks to fatdog11 for that informative post about PCB’s in fish-oil supplements. Are these same toxicity levels found in fish themselves, or possibly are these levels so high only in highly concentrated fish-oil products? Also, can fatdog11 please inform us more about algae-derived omega-3. What are the DHA and EPA levels in these capsules? What is the cost, and where can they be purchased?
Although GOED has used diligent care to ensure that the information provided on this website is accurate and up to date, we make no representation or warranty of the accuracy, reliability or completeness of this information. The website is intended to educate and inform readers about omega-3 fatty acids and is not meant to constitute or provide medical advice, diagnosis or treatment and is distributed without warranty of any kind, either expressly or implied. In no event shall GOED be liable for any damages arising from the reader’s reliance upon, or use of, these materials. The reader shall be solely responsible for any interpretation or use of material contained herein. The content of this document is subject to change without further notice.
For several years now, the fish oil and Alzheimer’s disease connection has been studied with consistent results. The essential fatty acids vital for brain function that are found in fish oil can not only slow cognitive decline, but can help prevent brain atrophy in older adults. A study published in the FASEB Journal looked at the health effects of four- to 17-month dietary supplementation with omega-3 fatty acids and antioxidants. The findings once again confirm the potential for fish oil to be used as a weapon to fend off the onset of cognitive decline and Alzheimer’s disease. (8)

Your body can convert some ALA into EPA and then DHA, but not enough to meet all your body’s needs but the best way to assure you are getting enough heart healthy fats is to eat foods high in the omega 3 fats, and if you can’t or don’t get enough of these necessary fats in your diet, you might consider taking an omega 3 supplement to boost these needed fats. More on this later.

Several studies suggest that people suffering symptoms of depression and/or anxiety see improvement after adding an omega-3 supplement to their routine, even in double-blinded, randomized, controlled trials. (29, 30, 31, 32, 33) At least one study comparing a common depression medication found omega-3 supplements to be just as effective in combating depression symptoms. (34)
Several large trials have evaluated the effect of fish or fish oils on heart disease. In the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardio (known as the GISSI Prevention Trial), heart attack survivors who took a 1-gram capsule of omega-3 fats every day for three years were less likely to have a repeat heart attack, stroke, or die of sudden death than those who took a placebo. (2) Notably, the risk of sudden cardiac death was reduced by about 50 percent. In the more recent Japan EPA Lipid Intervention Study (JELIS), participants who took EPA plus a cholesterol-lowering statin were less likely to have a major coronary event (sudden cardiac death, fatal or nonfatal heart attack, unstable angina, or a procedure to open or bypass a narrowed or blocked coronary artery) than those who took a statin alone. (3)
Fish oil supplement studies have failed to support claims of preventing heart attacks or strokes.[3][4][5][6] Earlier, in 2007, the American Heart Association had recommended the consumption of 1 gram of fish oil daily, preferably by eating fish, for patients with coronary artery disease, but cautioned pregnant and nursing women to avoid eating fish with high potential for mercury contaminants including mackerel, shark, and swordfish.[32] (Optimal dosage was related to body weight.)

Lok CE, Moist L, Hemmelgarn BR, Tonelli M, Vazquez MA, Dorval M, Oliver M, Donnelly S, Allon M, Stanley K; Fish Oil Inhibition of Stenosis in Hemodialysis Grafts (FISH) Study Group. Effect of fish oil supplementation on graft patency and cardiovascular events among patients with new synthetic arteriovenous hemodialysis grafts: a randomized controlled trial. JAMA 2012;307(17):1809-16. View abstract.

It is believed that regular consumption of fish oil aids in boosting your immune system, thereby enabling you to resist the occurrence of common diseases like colds, cough, and the flu. Omega-3 fatty acids present in fish oil bolster the immune system by affecting the activity and amount of cytokines and eicosanoids present in our body. Researchers have also studied the effect of a fish meal and fish oil on the immune system of pigs and found that fish oil aided in the growth of the animals. Similar research conducted on mice at Taichung Veterans General Hospital, Taiwan, also gave positive results.
There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.
Our scientists also focused on each oil’s freshness, measured by the degree of oxidation. Oxidation occurs in two phases: primary (measured by peroxide values) and secondary (measured by p-anisidine values). Total oxidation is formalized into a quantitative score, TOTOX. While Labdoor conducted tests of both primary and secondary oxidation, advances in rancidity testing confirm that added flavors–particularly added citrus flavors prevalent in liquid formulations–skew p-anisidine values and result in false positive outcomes. Until analytical techniques measuring p-anisidine values that are able to account for added flavors are established, Labdoor will use peroxide values as the primary indicator of freshness. All products recorded measurable levels of oxidation, with the average product recording a peroxide values of 3.7 meq/kg. 14/51 products recorded peroxide levels at or above the upper limit (10 meq/kg).
Higdon JV, Liu J, Du S, et al. Supplementation of postmenopausal women with fish oil rich in eicosapentaenoic acid and docosahexaenoic acid is not associated with greater in vivo lipid peroxidation compared with oils rich in oleate and linoleate as assessed by plasma malondialdehyde and F(2)- isoprostanes. Am J Clin Nutr 2000;72:714-22. View abstract.
Fish oils rich in omega 3 fatty acids help improve fertility and cell division. Preliminary research conducted on animals has shown that when males are fed a diet containing fish oil, the quality of the sperm is enhanced. After ejaculation, the sperm has increased survival against lipid peroxidative attacks in the female genital tract, thereby increasing the chances of conception. On the other hand, similar animal studies have shown inhibition in the synthesis of prostaglandin E and prostaglandin F, which are produced in large quantities by human seminal vesicles. The research, however, found no impact on the count and mobility of sperm.
Three omega−3 fatty acids are important in human physiology, α-linolenic acid (18:3, n-3; ALA), eicosapentaenoic acid (20:5, n-3; EPA), and docosahexaenoic acid (22:6, n-3; DHA).[67] These three polyunsaturates have either 3, 5, or 6 double bonds in a carbon chain of 18, 20, or 22 carbon atoms, respectively. As with most naturally-produced fatty acids, all double bonds are in the cis-configuration, in other words, the two hydrogen atoms are on the same side of the double bond; and the double bonds are interrupted by methylene bridges (-CH
Jump up ^ Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, Jordan HS, Lau J (July 2006). "n−3 Fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review". The American Journal of Clinical Nutrition. 84 (1): 5–17. doi:10.1093/ajcn/84.1.5. PMID 16825676.
High blood pressure. Fish oil seems to slightly lower blood pressure in people with moderate to very high blood pressure. Some types of fish oil might also reduce blood pressure in people with slightly high blood pressure, but results are inconsistent. Fish oil seems to add to the effects of some, but not all, blood pressure-lowering medications. However, it doesn't seem to reduce blood pressure in people with uncontrolled blood pressure who are already taking blood pressure-lowering medications.