^ Jump up to: a b MacLean CH, Newberry SJ, Mojica WA, Khanna P, Issa AM, Suttorp MJ, Lim YW, Traina SB, Hilton L, Garland R, Morton SC (2006-01-25). "Effects of omega−3 fatty acids on cancer risk: a systematic review". JAMA: The Journal of the American Medical Association. 295 (4): 403–15. doi:10.1001/jama.295.4.403. PMID 16434631. Retrieved 2006-07-07.

Wohl, D. A., Tien, H. C., Busby, M., Cunningham, C., Macintosh, B., Napravnik, S., Danan, E., Donovan, K., Hossenipour, M., and Simpson, R. J., Jr. Randomized study of the safety and efficacy of fish oil (omega-3 fatty acid) supplementation with dietary and exercise counseling for the treatment of antiretroviral therapy-associated hypertriglyceridemia. Clin.Infect.Dis. 11-15-2005;41(10):1498-1504. View abstract.


Bo and I worked with Dr. Harris many years ago to measure the impact of eating one Omega Cookie® daily on the study participants’ omega-3 index levels, and we recently ran into him at ISFFAL. At the conference, we remeasured our omega-3 index and omega-6/omega-3 ratios, and a few weeks later, we got our results in the mail. For the two of us, it was exciting to get another concrete measure of how our daily omega-3 consumption impacted our scores. For the record, we take one vial of Omega Restore™ per night and frequently sneak an Omega Heaven® or Omega Cookie during the day.

Although there are no randomized data on fish oil consumption and protection from sudden death, observational studies have linked omega-3 FA with the prevention of sudden death. In a population-based, case-control study of sudden cardiac death victims, the mean red blood cell membrane omega-3 FA level of the lowest quartile, when compared with the mean level of the third quartile, was associated with a relative risk reduction of 70%.33 A similar finding was appreciated in a nested, prospective, case-control study of the Physician Health Study cohort of 22,000 healthy males. In the 119 patients that succumbed to sudden death, baseline omega-3 FA blood levels were significantly lower than in matched controls.34 Finally, in an analysis of data from the Nurses Health Study, a cohort study of 84,688 women, an inverse association was shown between fish consumption and CAD-related death. The investigators concluded that the reduction in CAD deaths was likely due to a reduction in sudden deaths, as there was no difference in the rate of MI when comparing high and low fish consumption.35
Back in 2013, a study came out that made a lot of people concerned about fish oil supplements and cancer. The study, published in the Journal of the National Cancer Institute, showed that men who consume the largest amount of fish oil had a 71 percent higher risk of high-grade prostate cancer and a 43 percent increase in all types of prostate cancer. The study was conducted on 2,227 men, of which 38 percent of the men already had prostate cancer. (39)

If, however, we want to target the actions and benefits of either fat for more intensive support or clinical use, we need to alter the natural 1.5:1 EPA:DHA ratio found in most omega-3 sources such as fish oil – which is when concentrated supplements are especially useful. Certain forms of omega-3 called ethyl-ester and re-esterified triglyceride give nature a helping hand – allowing us to achieve targeted ratios of specific fatty acids at high concentration and physiologically active doses.
Like I mentioned earlier, there are no official guidelines for the proper amount of omega-3s you should consume each day. However, most organization agree that at least 2 servings of a 3.5 ounce serving of fish (preferably oily) each week is a good start. That equals about 500 milligrams of EPA/DHA each day. For treating disease, up to 4,000 milligrams per day is recommended by various studies, although values do vary. (96) It’s why a pescatarian diet can have such health protective effects.
Katzman  MA, Bleau  P, Blier  P,  et al; Canadian Anxiety Guidelines Initiative Group on behalf of the Anxiety Disorders Association of Canada/Association Canadienne des troubles anxieux and McGill University.  Canadian clinical practice guidelines for the management of anxiety, posttraumatic stress and obsessive-compulsive disorders.  BMC Psychiatry. 2014;14(suppl 1):S1. doi:10.1186/1471-244X-14-S1-S1PubMedGoogle ScholarCrossref
Dry eye. Higher intake of fish oil from the diet has been linked to a lower risk of dry eye in women. But the effects of fish oil in people with dry eye are inconsistent. Some research shows that fish oil reduces dry eye symptoms such as pain, blurred vision, and sensitivity. But fish oil doesn’t seem to improve other signs and symptoms of dry eye such as tear production and damage to the surface of the eye. Taking fish oil also doesn’t improve signs and symptoms of dry eye when used with other dry eye treatments.
The human body can make most of the types of fats it needs from other fats or raw materials. That isn’t the case for omega-3 fatty acids (also called omega-3 fats and n-3 fats). These are essential fats—the body can’t make them from scratch but must get them from food. Foods high in Omega-3 include fish, vegetable oils, nuts (especially walnuts), flax seeds, flaxseed oil, and leafy vegetables.
As mentioned above, the omega-3 index has been suggested as a predictor of the risk of coronary heart disease and other cardiovascular events. One study on a population in Seattle found that people with low omega-3 index levels were 10 times as likely to die from sudden cardiac death compared to people with higher omega-3 index levels (13). The NIH-funded Framingham study referenced above showed that the people with the highest omega-3 index levels had a 33% reduction in risk of death from any cause compared to the people with the lowest levels (2). In addition, a new study focused on individuals age 25 to 41 found that higher omega-3 index levels were associated with lower blood pressure in healthy adults (14).

Research conducted at the Louisiana State University has shown that fatty acids are effective in treating Alzheimer’s disease. Since fish oil is one of the best sources of essential fatty acids, including EPA and DHA, it helps in the treatment of Alzheimer’s disease. More research conducted at the University of California in Los Angeles (UCLA) validates the usefulness of fish oil as a possible remedy for the disease. The Alzheimer’s Association recommends fish containing a higher content of omega-3 fatty acids to patients since it acts as a defense against Alzheimer’s disease and dementia.
Due to the anticipated heterogeneity, a random-effects meta-analysis was chosen rather than a fixed-effects meta-analysis because random-effects modeling is more stringent and incorporates an among-study variance in the calculations. The entire meta-analysis procedure was performed on the platform of Comprehensive Meta-analysis statistical software, version 3 (Biostat). Under the preliminary assumption that the scales for anxiety symptoms are heterogeneous among the recruited studies, we chose Hedges g and 95% confidence intervals to combine the effect sizes, in accordance with the manual of the Comprehensive Meta-analysis statistical software, version 3. Regarding the interpretation of effect sizes, we defined Hedges g values 0 or higher as a better association of treatment with reduced anxiety symptoms of omega-3 PUFAs than in controls. For each analysis, a 2-tailed P value less than .05 was considered to indicate statistical significance. When more than 1 anxiety scale was used in a study, we chose the one with the most informative data (ie, mean and standard deviation [SD] before and after treatment). We entered the primary outcome provided in the included articles or obtained from the original authors. As for the variance imputation, we mainly chose the mean and SD before and after treatment. Later, we entered the mean and SD and calculated the effect sizes based on the software option, standardized by post score SD. In the case of studies with 2 active treatment arms, we merged the 2 active treatment arms into 1 group. If these 2 active treatment arms belonged to different subgroups (ie, different PUFA dosage subgroups), we kept them separate. Regarding the numbers of participants counted, we chose intention-to-treat as our priority. If there were insufficient data in the intention to treat group (ie, some studies only provided the changes in anxiety severity in those participants completing trials), we chose instead the per-protocol numbers of participants.

There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.
Three randomized trials assessing more than 600 patients with known malignant ventricular arrhythmia were carried out under the protection of implanted cardioverter defibrillator (ICD) therapy.41–43 In all 3 of the trials, 75% of the patients had ischemic heart disease, survived ventricular tachycardia or ventricular fibrillation and were randomized to 1 to 3 g/d of fish oil. In the first trial of its kind, 402 patients with ICDs were randomized to either a fish oil or an olive oil supplement.41 Although statistical significance was not reached, after approximately 1 year the primary end-point of time to first ICD cardioversion for ventricular tachycardia or fibrillation or death from any cause was longer in the fish oil group. This finding was not replicated in a trial of 200 patients who were randomized to either fish oil or a placebo and followed for a median of approximately 2 years.42 In fact, time to first ICD cardioversion was not changed and the incidence of recurrent ventricular tachycardia and fibrillation was more common in the group assigned to fish oil. In the largest trial, 546 patients were randomized to supplemental fish oil or a placebo and were followed for a mean period of 1 year.43 The primary outcome of the rate of ICD cardioversion or all-cause mortality was not reduced. It was concluded in a recent meta-analysis of these trials that fish oil did not have a protective effect.44
Fish oil supplements vary in the amounts and ratios of DHA and EPA they contain. For example, salmon oil naturally contains more DHA than EPA; a supplement derived from algae may only contain DHA. Krill oil contains significant amounts of both EPA and DHA. Read the labels and remember whatever supplement you buy, it must have at least 600 mg of DHA.

The use of DHA by persons with epilepsy could decrease the frequency of their seizures. Studies have shown that children with epilepsy had a major improvement, i.e. decrease in the frequency of their seizures, but another study showed mixed results with 57 adults taking DHA supplementation. The 57 subjects demonstrated a decreased frequency of seizures for the first six weeks of the study, but for some, it was just a temporary improvement (R).
It seems that infancy and childhood are some of the most important periods of time in a person’s life to get plenty omega-3s in their diet, probably because of the amount of long-chain fatty acids found in the brain and retina. It’s crucial for developing babies and children to get a good amount of DHA and EPA so their brains and eyes develop fully and properly. (78)

Another recent study shows that fatty fish consumption can cut the risk of eye-diabetes complications. The researches tracked the seafood consumption of about 3,600 diabetic men and women between the ages of 55 and 80 for nearly five years. The researchers found that people who regularly consumed 500 milligrams each day of omega-3 fatty acid in their diets (equal to two servings of fatty fish per week) were 48 percent less likely to develop diabetic retinopathy than those who consumed less. (23)
The reason why fish oil could increase a man’s risk of prostate cancer is IMBALANCE. Like I said earlier, omega-6 fatty acids aren’t bad for you. In fact, if your diet contains too many omega-3 fatty acids, your immune system wouldn’t work very well because omega-3 and omega-6 fatty acids are meant to work in a system of checks and balances. Omega-3 fatty acids suppress inflammation, and omega-6 fatty acids promote inflammation, which actually supports your body’s natural system of defense like activating your white blood cells.
Fearon, K. C., Von Meyenfeldt, M. F., Moses, A. G., Van Geenen, R., Roy, A., Gouma, D. J., Giacosa, A., Van Gossum, A., Bauer, J., Barber, M. D., Aaronson, N. K., Voss, A. C., and Tisdale, M. J. Effect of a protein and energy dense n-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut 2003;52(10):1479-1486. View abstract.
For those who do not eat seafood, another way exists for you to get a healthy dose of EPA and DHA each day. Fish oil supplements, which are rich in EPA and DHA, can be made from a variety of fish, with the most common ones being halibut, tuna, salmon, cod liver, mackerel and herring. On average, one 3.5 ounce serving of fatty fish contains about 1 gram of omega-3s, which can be obtained through fish oil supplements, according to MedlinePlus.
Founder and currently Executive Editor of Science-Based Medicine Steven Novella, MD is an academic clinical neurologist at the Yale University School of Medicine. He is also the host and producer of the popular weekly science podcast, The Skeptics’ Guide to the Universe, and the author of the NeuroLogicaBlog, a daily blog that covers news and issues in neuroscience, but also general science, scientific skepticism, philosophy of science, critical thinking, and the intersection of science with the media and society. Dr. Novella also has produced two courses with The Great Courses, and published a book on critical thinking - also called The Skeptics Guide to the Universe.
For rheumatoid arthritis, one systematic review found consistent, but modest, evidence for the effect of marine n−3 PUFAs on symptoms such as "joint swelling and pain, duration of morning stiffness, global assessments of pain and disease activity" as well as the use of non-steroidal anti-inflammatory drugs.[35] The American College of Rheumatology has stated that there may be modest benefit from the use of fish oils, but that it may take months for effects to be seen, and cautions for possible gastrointestinal side effects and the possibility of the supplements containing mercury or vitamin A at toxic levels. The National Center for Complementary and Integrative Health has concluded that "[n]o dietary supplement has shown clear benefits for rheumatoid arthritis", but that there is preliminary evidence that fish oil may be beneficial, but needs further study.[36]
Fish oil supplements came under scrutiny in 2006, when the Food Standards Agency in the UK and the Food Safety Authority of Ireland reported PCB levels that exceeded the European maximum limits in several fish oil brands,[60][61] which required temporary withdrawal of these brands. To address the concern over contaminated fish oil supplements, the International Fish Oil Standards (IFOS) Program, a third-party testing and accreditation program for fish oil products, was created by Nutrasource Diagnostics Inc. in Guelph, Ontario, Canada.[62]

About the only exception are wild-caught Alaskan salmon and very small fish like sardines. The highest concentrations of mercury are found in large carnivorous fish like tuna, sea bass, and marlin. You may need to be especially cautious of canned tuna as well, as independent testing by the Mercury Policy Project found that the average mercury concentration in canned tuna is far over the "safe limits" of the Environmental Protection Agency (EPA).


Maximizing the benefits you get from omega-3s is highly dependent on how they are absorbed and transported throughout your body. Although these fatty acids are water soluble, they cannot be easily transported into your blood in their free form. Therefore, they need to be packaged in lipoprotein vehicles for them to be better absorbed into your bloodstream.
To reach the required dose of EPA for treating certain conditions such as depression, CVD or CFS/ME you would need to take approximately 1-2 grams of ‘free EPA’ daily. Even with a concentrated omega-3 fish oil supplement, offering 180 mg excess EPA over DHA, this would require 10-20 capsules daily – significant in terms of volume and cost, and not efficient in terms of uptake in the body as our capacity for fat absorption is limited. The most effective and efficient way to ensure high EPA uptake in the body rapidly is to supplement with pure EPA for a minimum of 3-6 months.

The FDA product label on Lovaza warns of potential bleeding complications with the coadministration of anticoagulants. This warning is based on observational studies that suggested a prolonged bleeding time in populations ingesting high levels of fish oil77 and on in vitro studies that demonstrated an effect on pro-thrombotic mediators such as a reduction in thromboxane A2 production78 and platelet activation factor.79 The same trend, however, has not been clearly demonstrated in measurements of clotting times or in factors of fibrinolysis.80 In addition, in randomized clinical trials of patients undergoing coronary artery bypass graft surgery, percutaneous transluminal coronary angioplasty, endarterectomy and diagnostic angiography, no adverse bleeding related events have been demonstrated.81 For example, in a trial of 500 patients randomized to pretreatment with 6.9 g of DHA and EPA preparation 2 weeks before balloon percutaneous transluminal coronary angioplasty (where all the patients received 325 mg/d of aspirin and heparin bolus periprocedure), no difference was seen in bleeding complications.82 Similar results were seen in a trial of 610 patients undergoing coronary artery bypass graft surgery, randomized to either placebo or 4 g/d of fish oil and then further randomized to aspirin or warfarin (dosed to an international normalized ratio [INR] goal of 2.5–4.2). At 1 year, the number of bleeding complications was not increased.15 The effect of fish oil on INR values has not been studied extensively, but a small, randomized trial showed that fish oil did not alter the Coumadin dosing regimen.83 There is very little evidence that a lower target INR is necessary in patients receiving chronic warfarin therapy and fish oil.
For preventing and reversing the progression of hardening of the arteries after angioplasty: 6 grams of fish oil daily starting one month before angioplasty and continuing for one months after, followed by 3 grams daily for 6 months thereafter has been used. Also, 15 grams of fish oil has been taken daily for 3 weeks before angioplasty and for 6 months thereafter.
×