However, in both observational studies and controlled clinical trials, eating fish was shown to foster optimal development of a baby’s brain and nervous system, prompting advice that pregnant women and nursing mothers eat more fish rich in omega-3s while avoiding species that may contain mercury or other contaminants like PCBs sometimes found in freshwater fish.


Fish oil is very beneficial for pregnant women because the DHA present in it helps in the development of the eyes and brain of the baby. It also helps to avoid premature births, low birth weight, and miscarriages. Research conducted in Denmark, which involved 8,729 pregnant women, concluded that a diet with low amounts of fish resulted in a higher risk of premature or preterm babies.
Your body also needs omega-6s, another type of fatty acid, to function properly and prevent disease. Unfortunately, these are found in much more abundance than omega-3s in the standard American diet, although your body craves a 1:1 ratio to keep inflammation low. Most modern diets contain a ratio closer to 20:1 or 30:1 omega-6 to omega-3 fatty acids.
The contents of this website are for educational purposes and are not intended to offer personal medical advice. You should seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read on this website. The Nutrition Source does not recommend or endorse any products.
The three types of omega-3s are APA, EPA and DHA. The first is a medium-chain fatty acid and must be converted into EPA before being synthesized by the body, and only about 1 percent of the APA consumed is able to be converted. EPA and DHA are already in a form ready to be synthesized (and are the subject of most scientific research regarding omega-3s).
Most people get far too little omega-3s in their diet. In fact, research consistently indicates that the majority of Americans have just slightly more than half the amount of EPA and DHA in their tissues than they need for optimum brain and body health. This is partly due to a high dietary intake of unhealthy fats combined with an inadequate intake of EPA and DHA.
Brain function and vision rely on dietary intake of DHA to support a broad range of cell membrane properties, particularly in grey matter, which is rich in membranes.[61][62] A major structural component of the mammalian brain, DHA is the most abundant omega−3 fatty acid in the brain.[63] It is under study as a candidate essential nutrient with roles in neurodevelopment, cognition, and neurodegenerative disorders.[61]
Anxiety, the most commonly experienced psychiatric symptom, is a psychological state derived from inappropriate or exaggerated fear leading to distress or impairment. The lifetime prevalence of any anxiety disorder is reported to be approximately 1 in 3.1 Anxiety is often comorbid with depressive disorders2 and is associated with lower health-related quality of life3 and increased risk of all-cause mortality.4 Treatment options include psychological treatments, such as cognitive-behavioral therapy and pharmacological treatments, mainly with selective serotonin reuptake inhibitors.5 Individuals with anxiety and related disorders tend to be more concerned about the potential adverse effects of pharmacological treatments (eg, sedation or drug dependence) and may be reluctant to engage in psychological treatments that can be time-consuming and costly, as well as sometimes limited in availability.6 Thus, evidence-based and safer treatments are required, especially for anxious patients with comorbid medical conditions.

The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), found in plant oils, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), both commonly found in marine oils.[2] Marine algae and phytoplankton are primary sources of omega−3 fatty acids. Common sources of plant oils containing ALA include walnut, edible seeds, clary sage seed oil, algal oil, flaxseed oil, Sacha Inchi oil, Echium oil, and hemp oil, while sources of animal omega−3 fatty acids EPA and DHA include fish, fish oils, eggs from chickens fed EPA and DHA, squid oils, and krill oil. Dietary supplementation with omega−3 fatty acids does not appear to affect the risk of death, cancer or heart disease.[4][5] Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes or any vascular disease outcomes.[6][7]
Carrero, J. J., Fonolla, J., Marti, J. L., Jimenez, J., Boza, J. J., and Lopez-Huertas, E. Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. J.Nutr. 2007;137(2):384-390. View abstract.
Jatoi, A., Rowland, K., Loprinzi, C. L., Sloan, J. A., Dakhil, S. R., MacDonald, N., Gagnon, B., Novotny, P. J., Mailliard, J. A., Bushey, T. I., Nair, S., and Christensen, B. An eicosapentaenoic acid supplement versus megestrol acetate versus both for patients with cancer-associated wasting: a North Central Cancer Treatment Group and National Cancer Institute of Canada collaborative effort. J.Clin.Oncol. 6-15-2004;22(12):2469-2476. View abstract.

The chemical structure of eicosapentaenoic acid and docosahexaenoic acid. Eicosapentaenoic acid consists of 20 carbons (C20) with 5 double bonds, and the last unsaturated carbon is located third from the methyl end (n-3). Do-cosahexaenoic acid consists of 22 carbons (C22) with 6 double bonds, and also with the3 last unsaturated carbon located third from the methyl end (n-3). Adapted with permission from Frishman et al, eds. Cardiovascular Pharmacotherapeutics. New York, NY: McGraw Hill; 2003.3
Nonetheless, large population studies with solid data both on the participants’ diets and causes of disease and death bolstered the beliefs that eating fish often was a heart-healthy practice linked to reduced rates of cardiovascular disease. For example, a comprehensive analysis conducted by Dr. Dariush Mozaffarian and Eric Rimm of the Harvard T.H. Chan School of Public Health found that eating two servings of fatty fish a week — equal to about two grams of omega-3 fatty acids — lowered the risk of death from heart disease by more than a third and total deaths by 17 percent.
The National High Blood Pressure Education Program in the United States has cautioned against inaccurate publicity of fish oil as an effective means of lowering high blood pressure in patients suffering from hypertension. According to its report, fish oil supplements lower blood pressure in a very small way in hypertensive patients. Research conducted at the Channing Laboratory in Boston has revealed that moderate doses of fish oil supplements have little effect on the condition of high blood pressure in normotensive people.
As mentioned above, the omega-3 index has been suggested as a predictor of the risk of coronary heart disease and other cardiovascular events. One study on a population in Seattle found that people with low omega-3 index levels were 10 times as likely to die from sudden cardiac death compared to people with higher omega-3 index levels (13). The NIH-funded Framingham study referenced above showed that the people with the highest omega-3 index levels had a 33% reduction in risk of death from any cause compared to the people with the lowest levels (2). In addition, a new study focused on individuals age 25 to 41 found that higher omega-3 index levels were associated with lower blood pressure in healthy adults (14).
Chemical structure of alpha-linolenic acid (ALA), an essential omega−3 fatty acid, (18:3Δ9c,12c,15c, which means a chain of 18 carbons with 3 double bonds on carbons numbered 9, 12, and 15). Although chemists count from the carbonyl carbon (blue numbering), biologists count from the n (ω) carbon (red numbering). Note that, from the n end (diagram right), the first double bond appears as the third carbon-carbon bond (line segment), hence the name "n-3". This is explained by the fact that the n end is almost never changed during physiological transformations in the human body, as it is more energy-stable, and other compounds can be synthesized from the other carbonyl end, for example in glycerides, or from double bonds in the middle of the chain.

The differing actions of EPA and DHA, together with their competitive uptake, help to explain why studies that attempt to use standard fish oil therapeutically (where DHA and EPA are combined, in a natural ratio of approximately 1.5:1) are either less beneficial than expected, or even completely ineffective. Standard EPA/DHA fish oils are more suitable for everyday wellbeing, to compensate for a lack of fish in the diet and to meet a suggested intake.


Tanaka, K., Ishikawa, Y., Yokoyama, M., Origasa, H., Matsuzaki, M., Saito, Y., Matsuzawa, Y., Sasaki, J., Oikawa, S., Hishida, H., Itakura, H., Kita, T., Kitabatake, A., Nakaya, N., Sakata, T., Shimada, K., and Shirato, K. Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: subanalysis of the JELIS trial. Stroke 2008;39(7):2052-2058. View abstract.
If you are not 100% satisfied with any purchase made directly from Life Extension®, just return your purchase within 12 months of original purchase date and we will either replace the product for you, credit your original payment method or credit your Life Extension account for the full amount of the original purchase price (less shipping and handling).
Omega AD study, Freund-Levi et al. (47) Double-blind, placebo-controlled, randomized 1741 DHA (1.7 g/d) and EPA (0.6 g/d) Decline in cognitive function did not differ between supplemented group and placebo group at 6 mo. However, patients with very mild cognitive dysfunction (n = 32, MMSE score >27) in the EPA+DHA-supplemented group had a significant reduction in MMSE score decline rate at 6 mo

DHA is vital for early brain development and maintenance, while EPA seems to be closely related to behavior and mood. Together, both molecules provide critical neuroprotective benefits.11 These neuroprotective effects are important for the prevention of age-related brain shrinkage (cortical atrophy). Aging adults with brain shrinkage often experience memory loss, cognitive decline, and an increase in depression.12-14
You “beat me to the punch.” despite labels, cured meats , aged fats, as well as those heated to a high enough temperature all have trans bonds. Fish that offer high amounts of Omega-3 also often are high in mercury. I was fortunate to have a very good teacher for experimental design. One should be careful to assume that a study actually measures what it claims to and without “confounders” Confounders are parts of the study that complicate the the “logic” of the design. Also, were other fat contents measured or controlled? It would be reasonable to suspect that those with higher levels of Omega-3 could have higher levels of Omega-6, fats in general , High levels of protein, higher levels of testosterone, or lower levels of certain hormones. In addition, statistical studies do not and have never indicated a causal relationship. I have a fear of how much we have begun to rely on statistical correlational studies which are at the end of the day”soft” science.

When it comes to fat, there's one type you don’t want to cut back on: omega-3 fatty acids. Two crucial ones -- EPA and DHA -- are primarily found in certain fish. ALA (alpha-linolenic acid), another omega-3 fatty acid, is found in plant sources such as nuts and seeds. Not only does your body need these fatty acids to function, but also they deliver some big health benefits.

A 2008 meta-study by the Canadian Medical Association Journal found fish oil supplementation did not demonstrate any preventative benefit to cardiac patients with ventricular arrhythmias.[36] A 2012 meta-analysis published in the Journal of the American Medical Association, covering 20 studies and 68,680 patients, found that Omega-3 Fatty Acid supplementation did not reduce the chance of death, cardiac death, heart attack or stroke.[37]


The American Heart Association (AHA) recommends that everyone eats fish (particularly fatty, coldwater fish) at least twice a week. Salmon, mackerel, herring, sardines, lake trout, and tuna are especially high in omega-3 fatty acids. While foods are your best bet for getting omega-3s in your diet, fish oil supplements are also available for those who do not like fish. The heart-healthy benefits of regular doses of fish oil supplements are unclear, so talk to your doctor to see if they're right for you. If you have heart disease or high triglyceride levels, you may need even more omega-3 fatty acids. Ask your doctor if you should take higher doses of fish oil supplements to get the omega-3s you need.
High blood pressure. Fish oil seems to slightly lower blood pressure in people with moderate to very high blood pressure. Some types of fish oil might also reduce blood pressure in people with slightly high blood pressure, but results are inconsistent. Fish oil seems to add to the effects of some, but not all, blood pressure-lowering medications. However, it doesn't seem to reduce blood pressure in people with uncontrolled blood pressure who are already taking blood pressure-lowering medications.
×