The studies recruited men and women, some healthy and others with existing illnesses from North America, Europe, Australia and Asia. Participants were randomly assigned to increase their omega 3 fats or to maintain their usual intake of fat for at least a year. Most studies investigated the impact of giving a long-chain omega 3 supplement in a capsule form and compared it to a dummy pill.  Only a few assessed whole fish intake. Most ALA trials added omega 3 fats to foods such as margarine and gave these enriched foods, or naturally ALA-rich foods such as walnuts, to people in the intervention groups, and usual (non-enriched) foods to other participants.
Omega AD study, Freund-Levi et al. (47) Double-blind, placebo-controlled, randomized 1741 DHA (1.7 g/d) and EPA (0.6 g/d) Decline in cognitive function did not differ between supplemented group and placebo group at 6 mo. However, patients with very mild cognitive dysfunction (n = 32, MMSE score >27) in the EPA+DHA-supplemented group had a significant reduction in MMSE score decline rate at 6 mo
Belalcazar, L. M., Reboussin, D. M., Haffner, S. M., Reeves, R. S., Schwenke, D. C., Hoogeveen, R. C., Pi-Sunyer, F. X., and Ballantyne, C. M. Marine omega-3 fatty acid intake: associations with cardiometabolic risk and response to weight loss intervention in the Look AHEAD (Action for Health in Diabetes) study. Diabetes Care 2010;33(1):197-199. View abstract.
Pay attention to the quality of fish oil when purchasing it. It is obtained from almost all fishes – fresh water, farm, ocean, deep sea and shallow sea fish. All these fishes can be contaminated with toxic compounds such as mercury, arsenic, lead, forms of calcium, furans, dioxins, PCBs, and methylmercury, and can negatively affect the human body. Therefore, the fish oil used must be pure. Many companies sell ultra refined or distilled fish oil, but you should always check if the standards have been followed and research on the company or the product before adding it to your diet.
Hernandez, D., Guerra, R., Milena, A., Torres, A., Garcia, S., Garcia, C., Abreu, P., Gonzalez, A., Gomez, M. A., Rufino, M., Gonzalez-Posada, J., Lorenzo, V., and Salido, E. Dietary fish oil does not influence acute rejection rate and graft survival after renal transplantation: a randomized placebo-controlled study. Nephrol.Dial.Transplant. 2002;17(5):897-904. View abstract.
The Lyon Diet Heart Study, performed shortly after the DART study, was a prospective trial of 607 survivors of MI who were randomized to either a Mediterranean diet or a regular Western diet.49 At a mean follow-up of 27 months, the primary end point of death from cardiovascular causes and nonfatal deaths had a 73% relative risk reduction—a positive effect that continued at follow up assessment at a mean of 46 months.50 FA analysis of plasma lipids showed that in the patients randomized to a Mediterranean diet, there was a higher concentration of alpha-linolenic acid as well as EPA. Fish, however, was consumed in similar amounts by both the Western and Mediterranean diet groups. The higher blood level of EPA in the Mediterranean diet arm was attributed to its synthesis from alpha-linolenic acid, which was 60-times higher than the plasma concentration of EPA. In addition, the risk reduction that occurred in this trial could not be attributed to one particular diet intervention because as the consumption of fruits and vegetables increased, the consumption of monounsaturated fat increased, while saturated fat and cholesterol were decreased.
While fish oil has plenty of beneficial qualities, there is a lot of hype around its possible applications, and not all of them are accurate, so be wary when reading literature on this useful oil. Fish oil manufacturers have attempted to market it as a remedy for almost anything. We suggest that readers educate themselves fully before making an informed decision, rather than getting affected by both negative and positive propaganda about the beneficial applications of fish oil.
Belalcazar, L. M., Reboussin, D. M., Haffner, S. M., Reeves, R. S., Schwenke, D. C., Hoogeveen, R. C., Pi-Sunyer, F. X., and Ballantyne, C. M. Marine omega-3 fatty acid intake: associations with cardiometabolic risk and response to weight loss intervention in the Look AHEAD (Action for Health in Diabetes) study. Diabetes Care 2010;33(1):197-199. View abstract.

Omega-3 fatty acids are found primarily in fish oil and certain marine algae. Because depression appears less common in nations where people eat large amounts of fish, scientists have investigated whether fish oils may prevent and/or treat depression and other mood disorders. Two omega-3 fatty acids — eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) — are thought to have the most potential to benefit people with mood disorders.
Both omega−6 and omega−3 fatty acids are essential: humans must consume them in their diet. Omega−6 and omega−3 eighteen-carbon polyunsaturated fatty acids compete for the same metabolic enzymes, thus the omega−6:omega−3 ratio of ingested fatty acids has significant influence on the ratio and rate of production of eicosanoids, a group of hormones intimately involved in the body's inflammatory and homeostatic processes, which include the prostaglandins, leukotrienes, and thromboxanes, among others. Altering this ratio can change the body's metabolic and inflammatory state.[16] In general, grass-fed animals accumulate more omega−3 than do grain-fed animals, which accumulate relatively more omega−6.[86] Metabolites of omega−6 are more inflammatory (esp. arachidonic acid) than those of omega−3. This necessitates that omega−6 and omega−3 be consumed in a balanced proportion; healthy ratios of omega−6:omega−3, according to some authors, range from 1:1 to 1:4.[87] Other authors believe that a ratio of 4:1 (4 times as much omega−6 as omega−3) is already healthy.[88][89] Studies suggest the evolutionary human diet, rich in game animals, seafood, and other sources of omega−3, may have provided such a ratio.[90][91]
High levels of the oils in blood samples were linked with a 71 per cent increased risk of developing an aggressive and dangerous form of prostate cancer, according to the research. That study, if I recall correctly, mentioned concern about men eating fish more than a certain number of times a week having a 54% increased risk of developing prostate cancer.
56. Davidson MH, Stein EA, Bays HE, et al. COMBination of prescription Omega-3 with Simvastatin (COMBOS) Investigators. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007;29:1354–1367. [PubMed]
In my opinion, the key benefit of DHA lies in its unique spatial characteristics. As mentioned earlier, the extra double bond (six in DHA vs. five in EPA) and increased carbon length (22 carbons in DHA vs. 20 in EPA) means that DHA takes up takes up a lot more space than does EPA in the membrane. Although this increase in spatial volume makes DHA a poor substrate for phospholipase A2 as well as the COX and LOX enzymes, it does a great job of making membranes (especially those in the brain) a lot more fluid as the DHA sweeps out a much greater volume in the membrane than does EPA. This increase in membrane fluidity is critical for synaptic vesicles and the retina of the eye as it allows receptors to rotate more effectively thus increasing the transmission of signals from the surface of the membrane to the interior of the nerve cells. This is why DHA is a critical component of these highly fluid portions of the nerves (7). On the other hand, the myelin membrane is essentially an insulator so that relatively little DHA is found in that part of the membrane.
ALA is an essential fatty acid, which means that you need it but you must get this fat from your diet because your body is unable to produce it. In general, omega 3 fats are a crucial component of all cell membranes, including the eye (retina) and brain as well as aiding in the process of energy production to support functions involving the heart, lungs, immune system, and hormones (endocrine system), work properly.1
Omega-3 [(n-3)] fatty acids have been linked to healthy aging throughout life. Recently, fish-derived omega-3 fatty acids EPA and DHA have been associated with fetal development, cardiovascular function, and Alzheimer's disease. However, because our bodies do not efficiently produce some omega-3 fatty acids from marine sources, it is necessary to obtain adequate amounts through fish and fish-oil products. Studies have shown that EPA and DHA are important for proper fetal development, including neuronal, retinal, and immune function. EPA and DHA may affect many aspects of cardiovascular function including inflammation, peripheral artery disease, major coronary events, and anticoagulation. EPA and DHA have been linked to promising results in prevention, weight management, and cognitive function in those with very mild Alzheimer's disease.

Protects Vision: Our eyes' retinas are a membranous structures and the whole eye is covered in a soft double layer of membranes, making your eyes' health dependent on the liver (who knew?). The liver helps metabolize fat-soluble vitamins that feed and maintain those membranes. If you're deficient in DHA, it affects how we see by delaying the system that converts light into neural energy in the retina.


The hypotriglyceridemic effect of fish oil is well established and is related to both dose and baseline triglyceride level. Patients with triglycerides <90 mg/dL will be negligibly affected unless very high doses of omega-3 FA are used.67,68 However, in patients with triglycerides >200 mg/dL, who are treated with 4 g/d of fish oil, a 30% reduction in triglycerides is expected.17,69 For patients with triglycerides >500 mg/dL who are at risk for pancreatitis, the National Cholesterol Education Program Adult Treatment Panel III guidelines recommend using fish oil supplements as an adjunctive therapy to fibrates and nicotinic acid.70 Lovaza capsules have been shown to be effective, safe, and comparable to gemfibrozil in treating triglycerides at this range.71,72 The official label recommendation for Lovaza is for patients with triglycerides >500 mg/dL.73
Several small studies have shown that combination therapy with fish oil and HMG CoA reductase inhibitors is safe.56–61 The largest trial to date, the JELIS trial,32 was an open label trial of 18,645 Japanese adults with hypercholesterolemia who were randomized to a standard statin regimen or a fish oil formulation containing 1.8 g of EPA added to a statin medication. The cohort was made up mostly of postmenopausal, nonobese women with a 15% to 20% incidence of diabetes, tobacco use, or CAD. The primary outcome of any major cardiovascular event, at a mean of 4.6 years, was moderately reduced by a relative risk reduction of 26%. Both unstable angina and nonfatal MI were reduced, but no change was seen in sudden death. Overall, the findings were remarkable because at baseline approximately 90% of Japanese consumed at least 900 mg of EPA and DHA per day.62 The rates of cancer, joint pain, lumbar pain, or muscle pain were similar in the 2 groups. There was a similar rate of increase in measures of creatine phosphokinase, but more patients had an increase in aspartate aminotransferase levels (0.6% vs. 0.4%) in the fish oil group. The rate of bleeding was 1.1% in the fish oil combination group versus 0.6% in the HMG–CoA reductase inhibitor group.

Typical Western diets provide ratios of between 10:1 and 30:1 (i.e., dramatically higher levels of omega−6 than omega−3).[92] The ratios of omega−6 to omega−3 fatty acids in some common vegetable oils are: canola 2:1, hemp 2–3:1,[93] soybean 7:1, olive 3–13:1, sunflower (no omega−3), flax 1:3,[94] cottonseed (almost no omega−3), peanut (no omega−3), grapeseed oil (almost no omega−3) and corn oil 46:1.[95]
Flaxseed (or linseed) (Linum usitatissimum) and its oil are perhaps the most widely available botanical source of the omega−3 fatty acid ALA. Flaxseed oil consists of approximately 55% ALA, which makes it six times richer than most fish oils in omega−3 fatty acids.[126] A portion of this is converted by the body to EPA and DHA, though the actual converted percentage may differ between men and women.[127]
Fish oil has only a small benefit on the risk of premature birth.[43][44] A 2015 meta-analysis of the effect of omega−3 supplementation during pregnancy did not demonstrate a decrease in the rate of preterm birth or improve outcomes in women with singleton pregnancies with no prior preterm births.[45] A systematic review and meta-analysis published the same year reached the opposite conclusion, specifically, that omega−3 fatty acids were effective in "preventing early and any preterm delivery".[46]

Of great clinical importance, EPA and DHA supplementation during pregnancy has been associated with longer gestation and increased concentrations of EPA and DHA in fetal tissues (21). In 2005, preterm births accounted for 12.7% of all births in the United States, increasing the likelihood of health complications (22). Carrying a baby to term is very important because prematurity is the cause of various infant diseases and can lead to death; preterm delivery is an underlying factor for 85% of the deaths of normally formed infants (23). One mechanism by which EPA and DHA may decrease the incidence of preterm birth is by decreasing prostaglandin E2 and prostaglandin F2α production, therefore reducing inflammation within the uterus, which could be associated with preterm labor (21, 24). Several studies investigated EPA and DHA intake during pregnancy and its correlation with longer gestation. Conclusions were that EPA+DHA supplementation during pregnancy delayed the onset of delivery to term or closer to term; however, supplementation did not delay delivery to the point of being post-term (20, 23, 25). This supports the evidence that EPA+DHA ingestion leads to optimal pregnancy length. EPA+DHA supplementation reduced the HR of preterm delivery by 44% (95% CI: 14–64%) in those who consumed relatively low amounts of fish and 39% (95% CI: 16–56%) in those who consumed medium amounts of fish; however, a level of statistical significance was not met (P = 0.10) (23). The Judge et al. (20) study found that women who had DHA supplementation from gestation week 24 until full-term delivery carried their infants significantly (P = 0.019) longer than did the women in the placebo group. One study found that DHA supplementation after gestation week 21 led to fewer preterm births (<34 wk of gestation) in the DHA group compared with the control group (1.09% vs. 2.25%; adjusted RR, 0.49; 95% CI: 0.25–0.94; P = 0.03). Also, mean birth weight was 68 g heavier (95% CI: 23–114 g; P = 0.003) and fewer infants were of low birth weight in the DHA group compared with the control group (3.41% vs. 5.27%; adjusted RR, 0.65; 95% CI: 0.44–0.96; P = 0.03) (25).


Nine studies with 10 data sets used omega-3 PUFA dosages of less than 2000 mg/d.35,47,48,51,53,55,56,60,61 The main results revealed that there was no significant difference in the association of treatment with reduced anxiety symptoms between patients receiving omega-3 PUFA treatment and those not receiving it (k, 9; Hedges g, 0.457; 95% CI, –0.077 to 0.991; P = .09) (Figure 3B). Ten studies with 10 data sets used omega-3 PUFA dosages of at least 2000 mg/d.33,34,36,49,50,52,54,55,57-59 The main results revealed a significantly greater association of treatment with reduced anxiety symptoms in patients receiving omega-3 PUFA treatment than in those not receiving it (k, 11; Hedges g, 0.213; 95% CI, 0.031-0.395; P = .02) (Figure 3B). Furthermore, there was no significantly different estimated effect sizes between these 2 subgroups by the interaction test (P = .40).

First, EPA inhibits the enzyme that produces arachidonic acid. Second, EPA impedes the release of arachidonic acid from cell membranes (where it is stored) and its metabolization once it is released. Without this release and metabolization, your body can’t make eicosanoids. The result is lower risk of the inflammation that would have been caused by all that arachidonic acid going to eicosanoids.
And in osteoarthritis, when a DHA/EPA formulation was added to chondroitin sulfate, people experienced more complete relief of symptoms such as stiffness and pain. One study found a significant increase in walking speed in people who supplemented with fish oil versus those who did not.79,80 As with the beneficial results seen in people with bone loss, these positive findings may have been the result of the decreased inflammatory destruction of joint cartilage.81
CHAMPAIGN, Ill. — Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its euphoric effects, but it also has anti-inflammatory benefits. A new study in animal tissue reveals the cascade of chemical reactions that convert omega-3 fatty acids into cannabinoids that have anti-inflammatory benefits – but without the psychotropic high.
Secondly, when we consume EPA, it inhibits the production of AA from DGLA and also competes with AA for uptake into cell membranes and can therefore lower the amount of AA in membranes by literally saturating the cell – in essence, it takes up more of the available ‘space’ and displaces AA. When there is less AA present, there is a reduced capacity for it to produce inflammatory products.

Widenhorn-Müller  K, Schwanda  S, Scholz  E, Spitzer  M, Bode  H.  Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): a randomized placebo-controlled intervention trial.  Prostaglandins Leukot Essent Fatty Acids. 2014;91(1-2):49-60. doi:10.1016/j.plefa.2014.04.004PubMedGoogle ScholarCrossref
What makes omega-3 fats special? They are an integral part of cell membranes throughout the body and affect the function of the cell receptors in these membranes. They provide the starting point for making hormones that regulate blood clotting, contraction and relaxation of artery walls, and inflammation. They also bind to receptors in cells that regulate genetic function. Likely due to these effects, omega-3 fats have been shown to help prevent heart disease and stroke, may help control lupus, eczema, and rheumatoid arthritis, and may play protective roles in cancer and other conditions.
Basil — a flavorful and easy-to-find herb — is a strong source of omega-3 fatty acids. Since basil is used primarily as a seasoning, however, you likely won’t get a full day’s supply of omega-3 from a standard serving. For best results, use whole basil leaves, and add them toward the end of your meal’s cooking time to preserve the plant’s nutrients. In addition to delivering omega-3s, basil teas like Buddha Tea’s Organic Holy Basil Tea also promote calm and reduce cell inflammation.
The chemical structures of EPA and DHA are very similar and they compete for uptake and processing resources. During digestion, the triglyceride molecules in standard fish oil are broken down into a mono glycerol and two free fatty acids, small enough to be absorbed into cells of the gut lining. More often than not, DHA is the fatty acid that remains attached to the glycerol backbone, meaning in essence that DHA gets a ‘free pass’ into the gut, while the remaining free fatty acids (more often EPA) must reattach onto a glycerol molecule or risk being oxidised and used as fuel. The implication of this is that DHA levels in our cells are often concentrated at the expense of EPA after absorption when taking EPA and DHA in the standard ratio of 1.5 to 1.
Typical Western diets provide ratios of between 10:1 and 30:1 (i.e., dramatically higher levels of omega−6 than omega−3).[92] The ratios of omega−6 to omega−3 fatty acids in some common vegetable oils are: canola 2:1, hemp 2–3:1,[93] soybean 7:1, olive 3–13:1, sunflower (no omega−3), flax 1:3,[94] cottonseed (almost no omega−3), peanut (no omega−3), grapeseed oil (almost no omega−3) and corn oil 46:1.[95]
Dornstauder, B., Suh, M., Kuny, S., Gaillard, F., MacDonald, I., Michael T. Clandinin, M. T., & Sauvé, Y. (2012, June). Dietary docosahexaenoic acid supplementation prevents age-related functional losses and A2E accumulation in the retina. Investigative Ophthalmology and Visual Science. Retrieved from http://iovs.arvojournals.org/article.aspx?articleid=2188773
Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.
In total, 19 articles with 19 data sets revealed the main results of the meta-analysis, namely that there was a significantly better association of treatment with reduced anxiety symptoms in patients receiving omega-3 PUFA treatment than in those not receiving it (k, 19; Hedges g, 0.374; 95% CI, 0.081-0.666; P = .01; Figure 2), with significant heterogeneity (Cochran Q, 178.820; df, 18; I2, 89.934%; P < .001) but no significant publication bias via Egger regression (t, 1.736; df, 17; P = .10) or inspection of the funnel plot (eFigure 2 in the Supplement). According to the trim-and-fill test, there was no need for adjustment for publication bias. The meta-analysis results remained significant after removal of any one of the included studies, which indicated that the significant results are not owing to any single study.
Jump up ^ Bloch MH, Qawasmi A (October 2011). "Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology: systematic review and meta-analysis". Journal of the American Academy of Child and Adolescent Psychiatry. 50 (10): 991–1000. doi:10.1016/j.jaac.2011.06.008. PMC 3625948. PMID 21961774.
Dyerberg, J., Eskesen, D. C., Andersen, P. W., Astrup, A., Buemann, B., Christensen, J. H., Clausen, P., Rasmussen, B. F., Schmidt, E. B., Tholstrup, T., Toft, E., Toubro, S., and Stender, S. Effects of trans- and n-3 unsaturated fatty acids on cardiovascular risk markers in healthy males. An 8 weeks dietary intervention study. Eur.J.Clin.Nutr. 2004;58(7):1062-1070. View abstract.
Retinol (Vitamin A) B vitamins: Thiamine (B1) Riboflavin (B2) Niacin (B3) Pantothenic acid (B5) Pyridoxine (B6) Biotin (B7) Folic acid (B9) Cyanocobalamin (B12) Ascorbic acid (Vitamin C) Ergocalciferol and Cholecalciferol (Vitamin D) Tocopherol (Vitamin E) Naphthoquinone (Vitamin K) Calcium Choline Chromium Cobalt Copper Fluorine Iodine Iron Magnesium Manganese Molybdenum Phosphorus Potassium Selenium Sodium Sulfur Zinc
^ Jump up to: a b Hooper L, Thompson RL, Harrison RA, Summerbell CD, Ness AR, Moore HJ, Worthington HV, Durrington PN, Higgins JP, Capps NE, Riemersma RA, Ebrahim SB, Davey Smith G (2006). "Risks and benefits of omega−3 fats for mortality, cardiovascular disease, and cancer: systematic review". BMJ. 332 (7544): 752–60. doi:10.1136/bmj.38755.366331.2F. PMC 1420708. PMID 16565093. Retrieved 2006-07-07.[permanent dead link]
Dyerberg, J., Eskesen, D. C., Andersen, P. W., Astrup, A., Buemann, B., Christensen, J. H., Clausen, P., Rasmussen, B. F., Schmidt, E. B., Tholstrup, T., Toft, E., Toubro, S., and Stender, S. Effects of trans- and n-3 unsaturated fatty acids on cardiovascular risk markers in healthy males. An 8 weeks dietary intervention study. Eur.J.Clin.Nutr. 2004;58(7):1062-1070. View abstract.
Omega-3 is a group of long-chain polyunsaturated fatty acids, perhaps most notably found in fatty fish. As science parses the biological actions of nutrients, it turns out that omega-3 fats do many good things for the body and the brain. Known as an "essential" fatty acid, meaning the body must take it in from food sources, omega-3 is important to human metabolism.
For preventing and reversing the progression of hardening of the arteries after angioplasty: 6 grams of fish oil daily starting one month before angioplasty and continuing for one months after, followed by 3 grams daily for 6 months thereafter has been used. Also, 15 grams of fish oil has been taken daily for 3 weeks before angioplasty and for 6 months thereafter.
×