Fish oil contamination even among “molecularly distilled” brands and those aimed at children is a widespread problem. One study in California tested 10 common brands and found PCBs — toxic industrial pollutants that have contaminated our oceans — in all of them. Some had 70 times the PCBs of other ones and 240x the toxicity. In another study, researchers tested 13 over-the-counter children’s dietary supplements containing fish oil for PCBs. PCBs were detected in all products. Our family takes algae-derived omega-3 (DHA/EPA) capsules, which are bioequivalent to fish oil capsules. Algae are actually the source where fish get their omega-3 content, so we skip the contaminated middle man (or, fish, in this case) and the neurotoxins that come with them given how polluted our oceans are now. I highly recommend parents do their research on what studies show about fish oil contamination and not just trust the labels, as well as consider algae-derived omega-3 capsules as more healthful bioequivalent to fish oil.


Healthy cells require a delicate balance of EPA and DHA and the body employs clever mechanisms to support this natural equilibrium. DHA levels are self-regulated through inhibiting the activity of the enzyme delta-6 desaturase – the very enzyme that supports the conversion of EPA into DHA – to ensure levels of DHA do not become too high. It is therefore possible to have too much preformed DHA, if our supplement intake exceeds the body’s needs.


Currently, there isn’t a set standard recommendation for how many omega-3s we need each day, but suggestions range from a fish oil dosage of 500 to 1,000 milligrams daily depending on whom you ask. How easy is it to get these recommended amounts? To give you an idea, there are more than 500 milligrams of total omega-3s in one can of tuna fish and one small serving of wild-caught salmon.

The ultimate goal of using omega-3 fatty acids is the reduction of cellular inflammation. Since eicosanoids derived from arachidonic acid (AA), an omega-6 fatty acid, are the primary mediators of cellular inflammation, EPA becomes the most important of the omega-3 fatty acids to reduce cellular inflammation for a number of reasons. First, EPA is an inhibitor of the enzyme delta-5-desaturase (D5D) that produces AA (1). The more EPA you have in the diet, the less AA you produce. This essentially chokes off the supply of AA necessary for the production of pro-inflammatory eicosanoids (prostaglandins, thromboxanes, leukotrienes, etc.). DHA is not an inhibitor of this enzyme because it can’t fit into the active catalytic site of the enzyme due to its larger spatial size. As an additional insurance policy, EPA also competes with AA for the enzyme phospholipase A2 necessary to release AA from the membrane phospholipids (where it is stored). Inhibition of this enzyme is the mechanism of action used by corticosteroids. If you have adequate levels of EPA to compete with AA (i.e. a low AA/EPA ratio), you can realize many of the benefits of corticosteroids but without their side effects. That’s because if you don’t release AA from the cell membrane then you can’t make inflammatory eicosanoids. Because of its increased spatial dimensions, DHA is not a good competitor of phospholipase A2 relative to EPA. On the other hand, EPA and AA are very similar spatially so they are in constant competition for the phospholipase A2 enzyme just as both fatty acids are in constant competition for the delta-5 desaturase enzyme. This is why measuring the AA/EPA ratio is such a powerful predictor of the state of cellular inflammation in your body.
“The review provides good evidence that taking long-chain omega 3 (fish oil, EPA or DHA) supplements does not benefit heart health or reduce our risk of stroke or death from any cause.  The most trustworthy studies consistently showed little or no effect of long-chain omega 3 fats on cardiovascular health. On the other hand, while oily fish is a healthy food, it is unclear from the small number of trials whether eating more oily fish is protective of our hearts. 

Dyerberg, J., Eskesen, D. C., Andersen, P. W., Astrup, A., Buemann, B., Christensen, J. H., Clausen, P., Rasmussen, B. F., Schmidt, E. B., Tholstrup, T., Toft, E., Toubro, S., and Stender, S. Effects of trans- and n-3 unsaturated fatty acids on cardiovascular risk markers in healthy males. An 8 weeks dietary intervention study. Eur.J.Clin.Nutr. 2004;58(7):1062-1070. View abstract.
Badia-Tahull, M. B., Llop-Talaveron, J. M., Leiva-Badosa, E., Biondo, S., Farran-Teixido, L., Ramon-Torrell, J. M., and Jodar-Masanes, R. A randomised study on the clinical progress of high-risk elective major gastrointestinal surgery patients treated with olive oil-based parenteral nutrition with or without a fish oil supplement. Br.J.Nutr. 2010;104(5):737-741. View abstract.
Meta-analyses (research that combines and analyzes results of multiple studies) generally suggest that the omega-3s are effective, but the findings are not unanimous because of variability between doses, ratios of EPA to DHA, and other study design issues. The most effective preparations appear to have at least 60% EPA relative to DHA. While DHA is thought to be less effective as an antidepressant, it may have protective effects against suicide. Recent work at Massachusetts General Hospital and Emory University suggests that depressed individuals who are overweight and have elevated inflammatory activity may be particularly good candidates for EPA treatment.

Finally, it is often assumed since there are not high levels of EPA in the brain, that it is not important for neurological function. Actually it is key for reducing neuro-inflammation by competing against AA for access to the same enzymes needed to produce inflammatory eicosanoids. However, once EPA enters into the brain it is rapidly oxidized (2,3). This is not the case with DHA (4). The only way to control cellular inflammation in the brain is to maintain high levels of EPA in the blood. This is why all the work on depression, ADHD, brain trauma, etc. have demonstrated EPA to be superior to DHA (5).


Fish oil is FDA approved to lower triglycerides levels, but it is also used for many other conditions. It is most often used for conditions related to the heart and blood system. Some people use fish oil to lower blood pressure, triglycerides and cholesterol levels. Fish oil has also been used for preventing heart disease or stroke, as well as for clogged arteries, chest pain, irregular heartbeat, bypass surgery, heart failure, rapid heartbeat, preventing blood clots, and high blood pressure after a heart transplant.
×