There is, however, significant difficulty in interpreting the literature due to participant recall and systematic differences in diets.[53] There is also controversy as to the efficacy of omega−3, with many meta-analysis papers finding heterogeneity among results which can be explained mostly by publication bias.[54][55] A significant correlation between shorter treatment trials was associated with increased omega−3 efficacy for treating depressed symptoms further implicating bias in publication.[55]
Mozaffarian D, Marchioli R, Macchia A, Silletta MG, Ferrazzi P, Gardner TJ, Latini R, Libby P, Lombardi F, O'Gara PT, Page RL, Tavazzi L, Tognoni G; OPERA Investigators. Fish oil and postoperative atrial fibrillation: the Omega-3 Fatty Acids for Prevention of Post-operative Atrial Fibrillation (OPERA) randomized trial. JAMA 2012;308(19):2001-11. View abstract.
If you want to take higher doses of omega-3 fish oil supplements, talk to your doctor first. Your doctor can guide you in supplementing your diet with omega-3 fish oil. Also, your doctor can monitor all aspects of your health if you take higher doses of fish oil.For people with very high triglyceride levels, prescription omega-3 preparations are also available.

Omega-3 fatty acids have been found to play a role in atherosclerosis and peripheral arterial disease (PAD). It is thought that both EPA and DHA improve plaque stability, decrease endothelial activation, and improve vascular permeability, thereby decreasing the chance of experiencing a cardiovascular event (41). It was found that EPA supplementation is associated with significantly higher amounts of EPA in the carotid plaque than placebo (P < 0.0001), which may lead to decreased plaque inflammation and increased stability (42). PAD, a manifestation of atherosclerosis, is characterized by buildup of plaque in the arteries of the leg and can eventually lead to complete blockage of the arteries. EPA+DHA supplementation has been shown to improve endothelial function in patients with PAD by decreasing plasma levels of soluble thrombomodulin from a median value of 33.0 μg/L to 17.0 μg/L (P = 0.04) and improve brachial artery flow–mediated dilation from 6.7% to 10.0% (P = 0.02) (43). Patients who had PAD and were supplemented with EPA experienced a significantly lower major coronary event HR than those who did not take EPA (HR: 0.44; 95% CI: 0.19–0.97; P = 0.041) (44).
*Swordfish contains high levels of mercury, as does shark, king mackerel, and tilefish (sometimes called golden bass or golden snapper). Women who are or may become pregnant, nursing mothers, and young children should avoid these high-mercury species of fish, but can eat up to 12 ounces (two average meals) a week of a variety of fish and shellfish that are lower in mercury.
Peroxides can be produced when fish oil spoils. A study commissioned by the government of Norway concluded there would be some health concern related to the regular consumption of oxidized (rancid) fish/marine oils, particularly in regards to the gastrointestinal tract, but there is not enough data to determine the risk. The amount of spoilage and contamination in a supplement depends on the raw materials and processes of extraction, refining, concentration, encapsulation, storage and transportation.[51] ConsumerLab.com reports in its review that it found spoilage in test reports it ordered on some fish oil supplement products.[52]
for canned sardines i noticed the omega 3 EPA/DHA levels (written on the can) varied between the different company brands (sometimes by a lot!) , and also, the EPA/DHA amounts varied depending on what was added in the can with the sardines (sunflower oil, olive oil, brine, spring water, etc --- little note: there's more fat in the oily fish, than found in the brine/spring water)
Funding/Support: The work was supported in part by grant 17H04253, Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science; grant 30-A-17 from the National Cancer Center Research and Development Fund; grants MOST106-2314-B-039-027-MY, 106-2314-B-038-049, 106-2314-B-039-031, 106-2314-B-039-035, 104-2314-B-039-022-MY2, and 104-2314-B-039-050-MY3 from the Ministry of Science and Technology, Taiwan; grant HRI-EX105-10528NI from the National Health Research Institutes, Taiwan; and grants CRS-106-063, DMR-107-202, and DMR-107-204 from the China Medical University, Taiwan.
I have been a long time user of Fish Oils for their anti-inflammatory action, unfortunately I have not really obtained much benefit in that area, though the benefits of eye health have been very good. I have been thinking of dropping this supplement for a number of reasons, first, I read a while back the possibility of “sudden death” in those that supplement in larger quantities, I use 1-2 tablespoons since I have an autoimmune issue. Now that you have brought forth the information that Fish Oil suppresses CD8+ counts I will definitely do so, reason being CD8+ T cells are very much at the forefront of containing the Epstein Barr virus and this virus has been implicated in most autoimmune issues. I doubt it will make a difference with my AI, but perhaps it will help prevent other issues down the line. Keep up the great work, very informative!
Giacco, R., Cuomo, V., Vessby, B., Uusitupa, M., Hermansen, K., Meyer, B. J., Riccardi, G., and Rivellese, A. A. Fish oil, insulin sensitivity, insulin secretion and glucose tolerance in healthy people: is there any effect of fish oil supplementation in relation to the type of background diet and habitual dietary intake of n-6 and n-3 fatty acids? Nutr.Metab Cardiovasc.Dis. 2007;17(8):572-580. View abstract.
^ Jump up to: a b Hooper L, Thompson RL, Harrison RA, Summerbell CD, Ness AR, Moore HJ, Worthington HV, Durrington PN, Higgins JP, Capps NE, Riemersma RA, Ebrahim SB, Davey Smith G (2006). "Risks and benefits of omega−3 fats for mortality, cardiovascular disease, and cancer: systematic review". BMJ. 332 (7544): 752–60. doi:10.1136/bmj.38755.366331.2F. PMC 1420708. PMID 16565093. Retrieved 2006-07-07.[permanent dead link]
Bergmann, R. L., Haschke-Becher, E., Klassen-Wigger, P., Bergmann, K. E., Richter, R., Dudenhausen, J. W., Grathwohl, D., and Haschke, F. Supplementation with 200 mg/day docosahexaenoic acid from mid-pregnancy through lactation improves the docosahexaenoic acid status of mothers with a habitually low fish intake and of their infants. Ann Nutr Metab 2008;52(2):157-166. View abstract.
The chemical structures of EPA and DHA are very similar and they compete for uptake and processing resources. During digestion, the triglyceride molecules in standard fish oil are broken down into a mono glycerol and two free fatty acids, small enough to be absorbed into cells of the gut lining. More often than not, DHA is the fatty acid that remains attached to the glycerol backbone, meaning in essence that DHA gets a ‘free pass’ into the gut, while the remaining free fatty acids (more often EPA) must reattach onto a glycerol molecule or risk being oxidised and used as fuel. The implication of this is that DHA levels in our cells are often concentrated at the expense of EPA after absorption when taking EPA and DHA in the standard ratio of 1.5 to 1.
Omega-3 fatty acids have been shown to increase platelet responsiveness to subtherapeutic anticoagulation therapies, including aspirin. Recently, it was noted that patient response to aspirin for anticoagulation therapy is widely variable (45), and, thus, the number of patients with a low response to aspirin or aspirin resistance is estimated to range from <1% to 45%, depending on many variables. However, in patients with stable coronary artery disease taking low-dose aspirin, EPA+DHA supplementation has been proven to be as effective as aspirin dose escalation to 325 mg/d for anticoagulation benefits (45). The antiplatelet drug clopidogrel has also been associated with hyporesponsiveness in some patients. This could be attributed to poor patient compliance, differences in genes and platelet reactivity, variability of drug metabolism, and drug interactions. More importantly, in 1 study, patients receiving standard dual antiplatelet therapy (aspirin 75 mg/d and clopidogrel 600-mg loading dose followed by 75 mg/d) were assigned to either EPA+DHA supplementation or placebo. After 1 mo of treatment, the P2Y12 receptor reactivity index (an indicator of clopidogrel resistance) was significantly lower, by 22%, for patients taking EPA+DHA compared with patients taking placebo (P = 0.020) (46).
To reach the required dose of EPA for treating certain conditions such as depression, CVD or CFS/ME you would need to take approximately 1-2 grams of ‘free EPA’ daily. Even with a concentrated omega-3 fish oil supplement, offering 180 mg excess EPA over DHA, this would require 10-20 capsules daily – significant in terms of volume and cost, and not efficient in terms of uptake in the body as our capacity for fat absorption is limited. The most effective and efficient way to ensure high EPA uptake in the body rapidly is to supplement with pure EPA for a minimum of 3-6 months.
The University of East Anglia (UEA) is a UK Top 15 university. Known for its world-leading research and outstanding student experience, it was awarded Gold in the Teaching Excellence Framework and  is a leading member of Norwich Research Park, one of Europe’s biggest concentrations of researchers in the fields of environment, health and plant science. www.uea.ac.uk.
The FDA recommends that consumers do not exceed more than three grams per day of EPA and DHA combined, with no more than 2 grams from a dietary supplement.[56] This is not the same as 3000 mg of fish oil. A 1000 mg pill typically has only 300 mg of omega-3; 10 such pills would equal 3000 mg of omega-3. According to the European Food Safety Authority's (EFSA) Panel on Dietetic Products, Nutrition and Allergies, supplementation of 5 grams of EPA and DHA combined does not pose a safety concern for adults.[57] Dyerberg studied healthy Greenland Inuit and found an average intake of 5.7 grams of omega-3 EPA per day; among other effects these people had prolonged bleeding times, i.e., slower blood clotting.[58]
After the age of five, the development of the brain and CNS starts to reduce and the body’s need for DHA reduces. This is a good time to increase EPA in the diet, as studies show that EPA can help with childhood behaviour and academic performance, as well as focus, attention and reducing aggression. Dry skin conditions, asthma and allergies are also common in children and good levels of EPA at this time can help reduce the inflammation associated with these issues.
In general, most health organizations agree 250–500 milligrams of EPA and DHA combined each day is a reasonable amount to support healthy individuals. However, people with heart problems (or those with a high risk of heart disease), depression, anxiety and cancer (and possibly more conditions) may benefit from higher doses — up to 4,000 milligrams per day for some heart-related conditions. (5)

The various enzymes (COX and LOX) that make inflammatory eicosanoids can accommodate both AA and EPA, but again due to the greater spatial size of DHA, these enzymes will have difficulty in converting DHA into eicosanoids. This makes DHA a poor substrate for these key inflammatory enzymes. Thus DHA again has little effect on cellular inflammation whereas EPA can have a powerful impact.
There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.

The use of DHA by persons with epilepsy could decrease the frequency of their seizures. Studies have shown that children with epilepsy had a major improvement, i.e. decrease in the frequency of their seizures, but another study showed mixed results with 57 adults taking DHA supplementation. The 57 subjects demonstrated a decreased frequency of seizures for the first six weeks of the study, but for some, it was just a temporary improvement (R).

6. Krauss-Etschmann S, Shadid R, Campoy C, Hoster E, Demmelmair H, Jimenez M, Gil A, Rivero M, Veszpremi B, Decsi T, et al. Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: a European randomized multicenter trial. Am J Clin Nutr. 2007;85:1392–400. [PubMed]


“The review provides good evidence that taking long-chain omega 3 (fish oil, EPA or DHA) supplements does not benefit heart health or reduce our risk of stroke or death from any cause.  The most trustworthy studies consistently showed little or no effect of long-chain omega 3 fats on cardiovascular health. On the other hand, while oily fish is a healthy food, it is unclear from the small number of trials whether eating more oily fish is protective of our hearts. 
Although results from studies regarding the disease processes of AD seem to be promising, there are conflicting data regarding the use of omega-3 fatty acids in terms of cognitive function. Neuropsychiatric symptoms accompany AD from early stages and tend to increase with the progression of the disease (55). An analysis of 174 patients randomized to a placebo group or to a group with mild to moderate AD (MMSE score ≥15) treated with daily DHA (1.7 g) and EPA (0.6 g) found that at 6 mo, the decline in cognitive function did not differ between the groups. Yet, in a subgroup with very mild cognitive dysfunction (n = 32, MMSE score >27), they observed a significant reduction in the MMSE decline rate in the DHA+EPA-supplemented group compared with the placebo group (47). Another study that looked at DHA supplementation in individuals with mild to moderate AD used the Alzheimer's Disease Assessment Scale–Cognitive subscale, which evaluates cognitive function on a 70-point scale in terms of memory, attention, language, orientation, and praxis. This study found that DHA supplementation had no beneficial effect on cognition during the 18-mo trial period for the DHA group vs. placebo (56).
3. DHA affects your child's learning and behavior. Do you want to maximize your child's intellectual potential? A study published in Plos One in June 20138 linked low levels of DHA with poorer reading, and memory and behavioral problems in healthy school-age children. In another study published in the American Journal of Clinical Nutrition in August 2013,9 children who consumed an omega-3 fat supplement as infants scored higher on rule learning, vocabulary, and intelligent testing at ages 3 to 5.
Depression. There is inconsistent evidence on the effect of taking fish oil for depression. Some research shows that taking fish oil along with an antidepressant might help improve symptoms in some people. Other research shows that taking fish oil does not improve depression symptoms. The conflicting results may be due to the amount of EPA and DHA in the supplement or the severity of depression before treatment.
×