In our analysis, most of the included studies showed a positive Hedges g toward a beneficial effect of omega-3 PUFAs in anxiety reduction, although not all findings were statistically significant. However, after merging of these effect sizes from all of the included studies, the main result showed significant findings in our meta-analysis. Despite the significant heterogeneity, no significant publication bias was found among these 19 studies.
The Japanese notably have the lowest levels of coronary heart disease mortality and atherosclerosis among developed nations — a phenomena that has been largely subscribed to diet. However, even within Japan, a 10-year study of over 41,000 people found that higher intakes of omega-3s were associated with lower risks of nonfatal coronary events (8). A more recent study also found that Japanese with higher omega-3 index levels (10%) had a lower risk of fatal coronary heart disease than those with a lower omega-3 index levels (8%) (9). The study begs the question of whether maybe even the Japanese have room to improve their omega-3 intake and whether 8% should be considered the lower limit of a desirable range.
To evaluate the potential placebo effect, we made further subgrouping analyses. In the subgroups of studies using placebo controls, the omega-3 PUFAs still revealed a consistent positive anxiolytic association with anxiety symptoms. These phenomena meant that the anxiolytic effect of omega-3 PUFAs is probably not entirely owing to the placebo effect.

In lab experiments, animals given krill showed improved navigation skills. What this means is that they achieved higher levels of cognition and memory required to navigate complex territory.28 In addition, research shows that animals supplemented with krill oil showed significantly fewer signs of depression and resignation. This improvement in mood was equivalent to the effect of the prescription anti-depressant drug imipramine (Tofranil®).29
Omega AD study, Freund-Levi et al. (47) Double-blind, placebo-controlled, randomized 1741 DHA (1.7 g/d) and EPA (0.6 g/d) Decline in cognitive function did not differ between supplemented group and placebo group at 6 mo. However, patients with very mild cognitive dysfunction (n = 32, MMSE score >27) in the EPA+DHA-supplemented group had a significant reduction in MMSE score decline rate at 6 mo
Finally, in order for AA to be converted into inflammatory products it must be released from phospholipids (part of the cell membrane) using the enzyme phospholipase A2 and then converted by the enzyme cyclooxygenase. EPA utilises both of these enzymes, so if EPA levels are increased in the diet, it attracts enzyme away from AA to EPA – again giving rise to anti-inflammatory products instead of inflammatory ones.
The American Heart Association (AHA) has made recommendations for EPA and DHA due to their cardiovascular benefits: individuals with no history of coronary heart disease or myocardial infarction should consume oily fish two times per week; and "Treatment is reasonable" for those having been diagnosed with coronary heart disease. For the latter the AHA does not recommend a specific amount of EPA + DHA, although it notes that most trials were at or close to 1000 mg/day. The benefit appears to be on the order of a 9% decrease in relative risk.[106] The European Food Safety Authority (EFSA) approved a claim "EPA and DHA contributes to the normal function of the heart" for products that contain at least 250 mg EPA + DHA. The report did not address the issue of people with pre-existing heart disease. The World Health Organization recommends regular fish consumption (1-2 servings per week, equivalent to 200 to 500 mg/day EPA + DHA) as protective against coronary heart disease and ischaemic stroke.

Our Clinical Services Team - staffed by clinicians and other nutritional experts - answer technical questions about our nutritional formulas and the most effective ways to recommend them in a variety of protocols. And our product representatives help practitioners grow their business in many more ways than suggesting practice-appropriate nutritional products.
Giacco, R., Cuomo, V., Vessby, B., Uusitupa, M., Hermansen, K., Meyer, B. J., Riccardi, G., and Rivellese, A. A. Fish oil, insulin sensitivity, insulin secretion and glucose tolerance in healthy people: is there any effect of fish oil supplementation in relation to the type of background diet and habitual dietary intake of n-6 and n-3 fatty acids? Nutr.Metab Cardiovasc.Dis. 2007;17(8):572-580. View abstract.
There are numerous omega-3 sources with varying proportions of EPA and DHA, and the balance of EPA and DHA in a supplement influences the actions of these fats in the body. For more information about the different types of omega-3 sources and which are most suited for your individual needs, read our page on the different types of omega-3 supplements
Most people get far too little omega-3s in their diet. In fact, research consistently indicates that the majority of Americans have just slightly more than half the amount of EPA and DHA in their tissues than they need for optimum brain and body health. This is partly due to a high dietary intake of unhealthy fats combined with an inadequate intake of EPA and DHA.
Cardiovascular disease is the cause of 38% of all deaths in the United States, many of which are preventable (28). Chronic inflammation is thought to be the cause of many chronic diseases, including cardiovascular disease (29). EPA and DHA are thought to have antiinflammatory effects and a role in oxidative stress (30) and to improve cellular function through changes in gene expression (31). In a study that used human blood samples, EPA+DHA intake changed the expression of 1040 genes and resulted in a decreased expression of genes involved in inflammatory and atherogenesis-related pathways, such as nuclear transcription factor κB signaling, eicosanoid synthesis, scavenger receptor activity, adipogenesis, and hypoxia signaling (31). Circulating markers of inflammation, such as C-reactive protein (CRP), TNF α, and some ILs (IL-6, IL-1), correlate with an increased probability of experiencing a cardiovascular event (32). Inflammatory markers such as IL-6 trigger CRP to be synthesized by the liver, and elevated levels of CRP are associated with an increased risk of the development of cardiovascular disease (33). A study of 89 patients showed that those treated with EPA+DHA had a significant reduction in high-sensitivity CRP (66.7%, P < 0.01) (33). The same study also showed a significant reduction in heat shock protein 27 antibody titers (57.69%, P < 0.05), which have been shown to be overexpressed in heart muscle cells after a return of blood flow after a period of ischemia (ischemia-reperfusion injury) and may potentially have a cardioprotective effect (33).
For dry eye: Fish oil supplements providing EPA 360-1680 mg and DHA 240-560 mg have been used for 4-12 weeks. Some people used the specific product (PRN Dry Eye Omega Benefits softgels). A specific combination product containing EPA 450 mg, DHA 300 mg, and flaxseed oil 1000 mg (TheraTears Nutrition, Advanced Nutrition Research; Caruso’s Natural Health UltraMAX fish oil, Sydney, New South Wales, Australia) has been used once daily for 90 days.
42. Cawood AL, Ding R, Napper FL, Young RH, Williams JA, Ward MJ, Gudmundsen O, Vige R, Payne SP, Ye S, et al. Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis. 2010;212:252–9. [PubMed]
Jump up ^ Naliwaiko, K.; Araújo, R.L.F.; Da Fonseca, R.V.; Castilho, J.C.; Andreatini, R.; Bellissimo, M.I.; Oliveira, B.H.; Martins, E.F.; Curi, R.; Fernandes, L.C.; Ferraz, A.C. (2004). "Effects of Fish Oil on the Central Nervous System: A New Potential Antidepressant?". Nutritional Neuroscience. 7 (2): 91–99. doi:10.1080/10284150410001704525. PMID 15279495.

There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.
The bottom line of all that is that there was no clear health benefit from consuming omega-3 fatty acids in food or supplements. There was a suggestion of a possible benefit from LCn3 on cardiac events, but this did not hold up when they took into consideration the quality of the evidence. The better trials, with less risk of bias, tended to be negative.
Various scales were used in these studies to evaluate the target outcome of anxiety symptoms: the Yale-Brown Obsessive-Compulsive Scale, Profile of Mood States, State-Trait Anxiety Inventory, Hamilton Anxiety Rating Scale, Generalized Anxiety Disorder questionnaire, Depression, Anxiety, and Stress Scales, Clinician-Administered Posttraumatic Stress Disorder Scale, Beck Anxiety Inventory, visual analog scale of anxiety, Impact of Event Scale–Revised, Conners score anxiety subscale, Neuropsychiatric Inventory, test anxiety severity, Hospital Anxiety and Depression Scale anxiety subscale, and Child Behavior Checklist anxiety subscale. The psychiatric and physical health conditions of the recruited participants also varied widely: general population without specific clinical conditions,36,47,51,55,60 participants with acute myocardial infarction,35 borderline personality disorder,2 mild to severe depression,59 obsessive-compulsive disorder,33 severe accidental injury,49 participants who were traumatized by disaster,54 participants with substance abuse disorder,34 women with premenstrual syndrome,56 children with attention-deficit/hyperactivity disorder,48,53 Alzheimer disease,58 generally healthy undergraduate college students but with test anxiety,61 Parkinson disease,52 and participants with Tourette syndrome.57 Sixteen studies compared the effect of omega-3 PUFA treatment with that of the placebo33,34,36,47-49,51-53,55-61; the other 3 studies were non–placebo controlled trials.35,50,54 The mean (SD) Jadad score of the recruited studies was 3.8 (1.0) (eTable in the Supplement).
Because patients with depression experience rapid shrinking of their hippocampus, many strategies for relieving depression focus on increasing new brain cell growth in that specific area of the brain.23 There’s now evidence that increasing omega-3 intake, especially DHA, may be an effective way of treating or preventing depression, partly by protecting the hippocampus from further shrinkage.23

Metagenics offers a wide range of educational opportunities including webinars, group meetings, and seminars as part of our commitment to continuing functional medicine education. Our goal is to give our practitioners further insight to help address their patients’ unique health needs for a higher level of personalized, lifetime wellness care. We have been sharing this ever-growing body of nutritional and lifestyle research for over 25 years.
High levels of the oils in blood samples were linked with a 71 per cent increased risk of developing an aggressive and dangerous form of prostate cancer, according to the research. That study, if I recall correctly, mentioned concern about men eating fish more than a certain number of times a week having a 54% increased risk of developing prostate cancer.
A certain kidney disease called IgA nephropathy. Some research shows that long-term but not short-term use of fish oil can slow the loss of kidney function in high-risk patients with IgA nephropathy. Fish oil might have greater effects when taken at higher doses. Also, it might be most effective in people with IgA nephropathy who have higher levels of protein in the urine.
×