High blood pressure. Fish oil seems to slightly lower blood pressure in people with moderate to very high blood pressure. Some types of fish oil might also reduce blood pressure in people with slightly high blood pressure, but results are inconsistent. Fish oil seems to add to the effects of some, but not all, blood pressure-lowering medications. However, it doesn't seem to reduce blood pressure in people with uncontrolled blood pressure who are already taking blood pressure-lowering medications.
Another study conducted by researchers at Rhode Island Hospital examined the relationship between fish oil supplementation and indicators of cognitive decline. The subjects of the study were older adults: 229 cognitively normal individuals, 397 patients with mild cognitive impairment and 193 patients with Alzheimer’s disease. They were assessed with neuropsychological tests and brain magnetic resonance imaging every six months while taking fish oil supplements. The study found that the adults taking fish oil (who had not yet developed Alzheimer’s and did not have genetic risk factor for developing Alzheimer’s known as APOE ε4) experienced significantly less cognitive decline and brain shrinkage than adults not taking fish oil. (9)

High blood pressure. Fish oil seems to slightly lower blood pressure in people with moderate to very high blood pressure. Some types of fish oil might also reduce blood pressure in people with slightly high blood pressure, but results are inconsistent. Fish oil seems to add to the effects of some, but not all, blood pressure-lowering medications. However, it doesn't seem to reduce blood pressure in people with uncontrolled blood pressure who are already taking blood pressure-lowering medications.


Krauss-Etschmann, S., Hartl, D., Rzehak, P., Heinrich, J., Shadid, R., Del, Carmen Ramirez-Tortosa, Campoy, C., Pardillo, S., Schendel, D. J., Decsi, T., Demmelmair, H., and Koletzko, B. V. Decreased cord blood IL-4, IL-13, and CCR4 and increased TGF-beta levels after fish oil supplementation of pregnant women. J.Allergy Clin.Immunol. 2008;121(2):464-470. View abstract.
Findings  In this systematic review and meta-analysis of 19 clinical trials including 2240 participants from 11 countries, improvement in anxiety symptoms was associated with omega-3 polyunsaturated fatty acid treatment compared with controls in both placebo-controlled and non–placebo-controlled trials. The anxiolytic effects of omega-3 polyunsaturated fatty acids were also stronger in participants with clinical conditions than in subclinical populations.
Fish oil combined with fenofibrate has not been studied extensively in randomized controlled trials. Data to date, however, suggest that the combination is safe and effective.63,64 A recent randomized controlled trial of 100 patients with severe hypertriglyceridemia and HIV on highly active antiretroviral therapy showed that a regimen of fenofibrate and 3 g/d of fish oil for 8 weeks was well tolerated. The median baseline triglyceride level of 650 mg/dL was reduced by 65%.63 Another recent randomized, 2 month, double-blind, placebo-controlled trial, which was set up to assess the safety and efficacy of fenofibrate with 4 g of fish oil, showed that in the 81 patients assigned to combination therapy, triglyceride levels were reduced by 61%. Therapy was well-tolerated without significant adverse reactions at 8 weeks or at the end of a 2-year open label extension.64 The combination of fish oil and niacin requires further study.

It helps maintain a good luster of the hair because omega-3 has growth stimulating properties since it provides nourishment to the follicles. It aids in the development of hair and in preventing hair loss. A good supply of protein is also necessary for hair growth, and since most fish varieties are rich in protein, eating fish helps to keep hair healthy.
According to the Cardiovascular Research Institute in Maastricht in Netherlands, “Epidemiological studies show that replacing fat with carbohydrates may even be worse [than the Western-type high-fat diet] and that various polyunsaturated fatty acids (FA) have beneficial rather than detrimental effects on CVD (cardiovascular disease) outcome.” This includes fish-oil fatty acids with anti-inflammatory properties, which can help prevent and reverse a plethora of cardiovascular diseases. (19)
Before getting to know some of the fish oil side effects, you have to know more about fish oil, like its benefits and usages. Fish oil has become a popular supplement for athletes, as well as those looking to improve their overall health. Many claims have been made regarding the improvements to the body which can be made by using fish oil to increase the body's level of fatty omega-3 acids. Some of these claims have been backed up by studies, while others have not been proven with significant scientific evidence. There are also some precautions that need to be addressed if you will be taking fish oil regularly. People with certain health conditions may see a worsening of their symptoms if they increase their intake of fatty acids too quickly or with the wrong products.
Soy can get a bad rap — and may indeed cause problems for people with certain food sensitivities — but this delicious bean is one of the most powerful (and versatile) ways to add omega-3 to your diet. Whole soybeans (known as edamame) are a favorite protein-packed snack for vegetarians; more processed forms (including tofu, soy milk, and soybean-based cooking oil) make soy infinitely more accessible. For some ideas, check out the 1998 classic, The Whole Soy Cookbook, which outlines how to cook with soy-based products ranging from miso to tempeh and beyond.
The randomized trials assessing the efficacy of fish oil supplementation on secondary prevention of CAD lend further evidence to the findings that fish oil may protect from sudden cardiac death.36 The Diet and Reinfarction Trial (DART),37 one of the first randomized trials of fish oil in CAD, has been interpreted as potential support for fish oil’s role in sudden death reduction because the primary outcome of all-cause mortality occurred within 2 months of the trial’s onset.38 After such a short time span, it was believed that atherosclerosis would not be altered and therefore another mechanism was reducing mortality. This was further supported by the fact that nonfatal MIs were not reduced. Although the actual modes of death other than CAD-related deaths were not documented, it has been postulated to be secondary to a reduction in sudden death.39 The Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico-Prevenzione40 (GISSI-Prevenzione) trial, a larger randomized trial of fish oil in CAD, has also been interpreted as evidence for fish oil’s protection against sudden death. Sudden death, however, was not a primary end point. Rather, the reduction in fatal events was driven by a reduction in cardiovascular death, which included coronary death, cardiac death, and sudden death.
Thanks to fatdog11 for that informative post about PCB’s in fish-oil supplements. Are these same toxicity levels found in fish themselves, or possibly are these levels so high only in highly concentrated fish-oil products? Also, can fatdog11 please inform us more about algae-derived omega-3. What are the DHA and EPA levels in these capsules? What is the cost, and where can they be purchased?
There have been conflicting results reported about EPA and DHA and their use with regard to major coronary events and their use after myocardial infarction. EPA+DHA has been associated with a reduced risk of recurrent coronary artery events and sudden cardiac death after an acute myocardial infarction (RR, 0.47; 95% CI: 0.219–0.995) and a reduction in heart failure events (adjusted HR: 0.92; 99% CI: 0.849–0.999) (34–36). A study using EPA supplementation in combination with a statin, compared with statin therapy alone, found that, after 5 y, the patients in the EPA group (n = 262) who had a history of coronary artery disease had a 19% relative reduction in major coronary events (P = 0.011). However, in patients with no history of coronary artery disease (n = 104), major coronary events were reduced by 18%, but this finding was not significant (37). This Japanese population already has a high relative intake of fish compared with other nations, and, thus, these data suggest that supplementation has cardiovascular benefits in those who already have sufficient baseline EPA+DHA levels. Another study compared patients with impaired glucose metabolism (n = 4565) with normoglycemic patients (n = 14,080). Impaired glucose metabolism patients had a significantly higher coronary artery disease HR (1.71 in the non-EPA group and 1.63 in the EPA group). The primary endpoint was any major coronary event including sudden cardiac death, myocardial infarction, and other nonfatal events. Treatment of impaired glucose metabolism patients with EPA showed a significantly lower major coronary event HR of 0.78 compared with the non–EPA-treated impaired glucose metabolism patients (95% CI: 0.60–0.998; P = 0.048), which demonstrates that EPA significantly suppresses major coronary events (38). When looking at the use of EPA+DHA and cardiovascular events after myocardial infarction, of 4837 patients, a major cardiovascular event occurred in 671 patients (13.9%) (39). A post hoc analysis of the data from these diabetic patients showed that rates of fatal coronary heart disease and arrhythmia-related events were lower among patients in the EPA+DHA group than among the placebo group (HR for fatal coronary heart disease: 0.51; 95% CI: 0.27–0.97; HR for arrhythmia-related events: 0.51; 95% CI: 0.24–1.11, not statistically significant) (39). Another study found that there was no significant difference in sudden cardiac death or total mortality between an EPA+DHA supplementation group and a control group in those patients treated after myocardial infarction (40). Although these last 2 studies appear to be negative in their results, it is possible that the more aggressive treatment with medications in these more recent studies could attribute to this.
Our scientists also focused on each oil’s freshness, measured by the degree of oxidation. Oxidation occurs in two phases: primary (measured by peroxide values) and secondary (measured by p-anisidine values). Total oxidation is formalized into a quantitative score, TOTOX. While Labdoor conducted tests of both primary and secondary oxidation, advances in rancidity testing confirm that added flavors–particularly added citrus flavors prevalent in liquid formulations–skew p-anisidine values and result in false positive outcomes. Until analytical techniques measuring p-anisidine values that are able to account for added flavors are established, Labdoor will use peroxide values as the primary indicator of freshness. All products recorded measurable levels of oxidation, with the average product recording a peroxide values of 3.7 meq/kg. 14/51 products recorded peroxide levels at or above the upper limit (10 meq/kg).
The benefits of omega-3 fatty acids (EPA and DHA), which are found in fish oil, have been supported by repeated double-blind clinical trials. In 2004, the FDA announced qualified health claims for omega-3 fatty acids, noting supportive but not conclusive research that shows that consuming EPA and DHA omega-3 fatty acids may reduce the risk of coronary heart disease. Our Fish Oil includes 200mg of omega-3 fatty acids from EPA and DHA.
The chemical structure of eicosapentaenoic acid and docosahexaenoic acid. Eicosapentaenoic acid consists of 20 carbons (C20) with 5 double bonds, and the last unsaturated carbon is located third from the methyl end (n-3). Do-cosahexaenoic acid consists of 22 carbons (C22) with 6 double bonds, and also with the3 last unsaturated carbon located third from the methyl end (n-3). Adapted with permission from Frishman et al, eds. Cardiovascular Pharmacotherapeutics. New York, NY: McGraw Hill; 2003.3
For example, large predatory fish like shark, swordfish, king mackerel, tilefish and albacore tuna can contain high levels of methyl mercury, a toxin that would override any health benefit, especially for the developing brains of fetuses and young children as well as for adults, Dr. Nesheim and Marion Nestle, professor emerita of nutrition, food studies and public health at New York University, noted in 2014 in an editorial in the American Journal of Clinical Nutrition. (Levels of mercury and other contaminants in fish have since declined somewhat but are not negligible.)
An animal study involving the omega-3 ETA discovered that subjects experienced a drop in overall inflammation similar to that caused by NSAIDs (non-steroidal anti-inflammatory drugs), but without the dangerous gastrointestinal side effects. The study authors also pointed out that eicosapentaenoic acid seems to be even more potent than the conventional omega-3s found in fish oil supplements (EPA/DHA). (56)
In addition, there was no significant difference in the association of treatment with reduced anxiety symptoms between participants receiving omega-3 PUFAs and those not receiving omega-3 PUFAs in the adolescent subgroup (aged <18 years) (k, 3; Hedges g, 0.020; 95% CI, –0.209 to 0.250; P = .86),48,53,57 in the adult subgroup (aged ≥18 years but <60 years) (k, 11; Hedges g, 0.388; 95% CI, –0.012 to 0.788; P = .06),33,35,36,47,49-51,54-56,59 or in the elderly subgroup (aged ≥60 years) (k, 3; Hedges g, –0.112; 95% CI, –0.406 to 0.181; P = .45).52,58,60 These insignificant results might be due to the smaller sample sizes in each subgroup.

Full citation: Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega 3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews 2018, Issue 7. Art. No.: CD003177. DOI: 10.1002/14651858.CD003177.pub3.
Henneicke-von Zepelin, H. H., Mrowietz, U., Farber, L., Bruck-Borchers, K., Schober, C., Huber, J., Lutz, G., Kohnen, R., Christophers, E., and Welzel, D. Highly purified omega-3-polyunsaturated fatty acids for topical treatment of psoriasis. Results of a double-blind, placebo-controlled multicentre study. Br J Dermatol 1993;129(6):713-717. View abstract.
Today the only Food and Drug Administration (FDA)-approved form of dietary omega-3 FA supplement is Lovaza (omega-3-acid ethyl esters; GlaxoSmithKline), which contains 375 mg of DHA and 465 mg of EPA per 1 g capsule. The myriad of dietary supplements of fish oil, including Kosher capsules, vary from comparable content to insignificant amounts, and for the most part can include other fats and cholesterols. In comparison, to achieve approximately 1 g of EPA and DHA in a meal, 12 ounces of canned light tuna, 2 to 3 ounces of sardines, 1.5 to 2.5 ounces of farmed Atlantic salmon, or 20 ounces of farmed catfish must be consumed (Table 1).65 Unfortunately, potentially high levels of harmful pollutants offset this source of omega-3 FA. The FDA action level for unacceptably high mercury content in fish is 1.0 μg/g. The mercury level in most fish is at or below 0.1 μg/g, but tilefish, swordfish, and king mackerel have high levels of mercury. The majority of fish species also contain <100 ng/g of polychlorinated biphenyls, which is below the FDA action level of 2000 ng/g. Dioxins, which do not have FDA action levels, are present in the majority of marine life.66
On September 8, 2004, the U.S. Food and Drug Administration gave "qualified health claim" status to EPA and DHA omega−3 fatty acids, stating, "supportive but not conclusive research shows that consumption of EPA and DHA [omega−3] fatty acids may reduce the risk of coronary heart disease".[98] This updated and modified their health risk advice letter of 2001 (see below).
It can be challenging to get the appropriate intake of EPA and DHA through diet alone, even though EPA and DHA are produced by water plants such as algae and are prevalent in marine animals. A shorter chain omega-3 fatty acid, α-linolenic acid (ALA),6 is a prominent component of our diet as it is found in many land plants that are commonly eaten, but it does not provide the health benefits seen with EPA and DHA. Although it is possible for the body to convert ALA to EPA and DHA by enlongase and desaturase enzymes, research suggests that only a small amount can be synthesized in the body from this process (8). For example, 1 study suggested that only ∼2 to 10% of ALA is converted to EPA or DHA (9), and other studies found even less: Goyens et al. (10) found an ALA conversion of ∼7% for EPA, but only 0.013% for DHA; Hussein et al. (11) found an ALA conversion of only 0.3% for EPA and <0.01% for DHA.
Your body also needs omega-6s, another type of fatty acid, to function properly and prevent disease. Unfortunately, these are found in much more abundance than omega-3s in the standard American diet, although your body craves a 1:1 ratio to keep inflammation low. Most modern diets contain a ratio closer to 20:1 or 30:1 omega-6 to omega-3 fatty acids.

Today, some doctors are starting to measure the omega-3 index levels of their patients, just like they do with cholesterol levels. However, if your doctor does not offer this, several companies provide a quick and easy blood test you can conduct yourself, including OmegaQuant. This company is run by by Dr. William Harris, one of the scientists who initially developed the concept of the omega-3 index.
Omega-3 fatty acids have been found to play a role in atherosclerosis and peripheral arterial disease (PAD). It is thought that both EPA and DHA improve plaque stability, decrease endothelial activation, and improve vascular permeability, thereby decreasing the chance of experiencing a cardiovascular event (41). It was found that EPA supplementation is associated with significantly higher amounts of EPA in the carotid plaque than placebo (P < 0.0001), which may lead to decreased plaque inflammation and increased stability (42). PAD, a manifestation of atherosclerosis, is characterized by buildup of plaque in the arteries of the leg and can eventually lead to complete blockage of the arteries. EPA+DHA supplementation has been shown to improve endothelial function in patients with PAD by decreasing plasma levels of soluble thrombomodulin from a median value of 33.0 μg/L to 17.0 μg/L (P = 0.04) and improve brachial artery flow–mediated dilation from 6.7% to 10.0% (P = 0.02) (43). Patients who had PAD and were supplemented with EPA experienced a significantly lower major coronary event HR than those who did not take EPA (HR: 0.44; 95% CI: 0.19–0.97; P = 0.041) (44).
The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), found in plant oils, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), both commonly found in marine oils.[2] Marine algae and phytoplankton are primary sources of omega−3 fatty acids. Common sources of plant oils containing ALA include walnut, edible seeds, clary sage seed oil, algal oil, flaxseed oil, Sacha Inchi oil, Echium oil, and hemp oil, while sources of animal omega−3 fatty acids EPA and DHA include fish, fish oils, eggs from chickens fed EPA and DHA, squid oils, and krill oil. Dietary supplementation with omega−3 fatty acids does not appear to affect the risk of death, cancer or heart disease.[4][5] Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes or any vascular disease outcomes.[6][7]
Fish oils seem to decrease blood pressure. Taking fish oils along with medications for high blood pressure might cause your blood pressure to go too low.Some medications for high blood pressure include captopril (Capoten), enalapril (Vasotec), losartan (Cozaar), valsartan (Diovan), diltiazem (Cardizem), Amlodipine (Norvasc), hydrochlorothiazide (HydroDiuril), furosemide (Lasix), and many others.
×